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T
he continuing demand for improved wire-
less connectivity and enhanced data rates 
has spurred worldwide research in micro-
wave and millimeter (mm)-wave circuits 
and systems within academia, government, 

and industrial centers. At the University of Califor-
nia, San Diego (UCSD), the Center for Wireless Com-
munications (CWC) was established more than two 
decades ago and has contributed to analog, micro-
wave, and millimeter circuits and systems research; 

communication and information theory; coding; and 
application studies for 4G, 5G, and 6G wireless sys-
tems. This article highlights recent UCSD research ef-
forts, emphasizing the microwave and mm-wave cir-
cuits and systems and accompanying analog circuit 
techniques, carried out in conjunction with the CWC.

Multiple companies from around the world have 
sponsored UCSD research, and additional research 
has been funded through numerous U.S. government 
awards. The closeness between the wireless industry 
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firms and the university has been particularly valu-
able in focusing the research on themes important for 
applications. Graduates of the program have also had 
a major influence on wireless industry activities, par-
ticularly in California.

This article first covers research results in mm-wave 
circuits and assemblies for antenna array transmitters 
and receivers for 5G and beyond, followed by a dis-
cussion of low-power microwave circuits for Internet 
of Things (IoT) applications, mixed-signal circuits for 
translating the relevant signals between microwave and 
digital domains, and a novel system methodology for 
interfacing with low-power wireless nodes via Wi-Fi.

mm-Wave Antenna Array Transmitters  
and Receivers
A cornerstone of wireless communication systems at 
high frequencies is the use of antenna arrays to direct 
the transmitted power toward the desired receiver 
(or multiple receivers) in appropriate narrow beams. 
As the number of elements in the array increases, 
the beamwidth decreases, enabling efficient focus-
ing of the output power on the desired receivers. For 
large arrays, it is a significant challenge to provision 

appropriately phased and amplitude-controlled sig-
nals to the different array elements, which are typically 
spaced at distances of half the free space wavelength 
of the carrier frequency. Prof. Gabriel Rebeiz’s group 
has been pioneering the development of affordable 
satellite communications (SATCOM) and 5G phased 
arrays based on silicon technologies since 2005 [1], [2], 
[3], [4], [5], [6], [7], [8, and references therein]. At present, 
these systems can integrate the entire phased array on 
a single low-cost printed circuit board that includes the 
antennas, silicon beamformer chips, and the necessary 
control electronics. The board can be assembled using 
automated high-volume manufacturing techniques, 
making it very low cost in large numbers, and is also 
calibrated using built-in tests and also fast far-field 
pattern measurements. UCSD and Rebeiz’s group pio-
neered this approach for phased arrays and developed 
the first silicon phased array chips (called beamformer 
chips) based on the 2 × 2 quad approach and the first 
single-printed circuit board (PCB) phased arrays. This 
has lowered the cost of phased arrays by a factor of 
50–100×, making them affordable for commercial use 
in SATCOM and mm-wave 5G. A representative exam-
ple is shown in Figure 1, a 1,024-element receiver array 
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covering the K-band (17.7–20.2 GHz) for SATCOM [7]. 
A single PCB of 25 cm × 22 cm is used, making it the 
largest single-PCB K-band array to date. The narrow 
3.5° beamwidth with ±70° scan angles enables track-
ing satellites in low Earth orbit, an emerging area for 
broadband connectivity.

The same ideas and techniques have been used by 
companies such as SpaceX/Starlink for their SATCOM 
terminals (known as “Dishy”), Collins Aerospace, 
Viasat, Boeing, and others for their airborne phased 
array terminals on commercial and defense aircraft 
and Qualcomm, Nokia, Samsung, Ericsson, and sev-
eral other companies for their low-cost 5G phased 
arrays at 28 GHz and 39 GHz. It is no exaggeration that 

every affordable phased array built today follows the 
silicon beamformers and single-PCB design approach 
developed at UCSD.

Prof. Rebeiz continues developing wideband phased 
arrays for X-/Ku-/Ka-band SATCOM, 18- to 50-GHz 
wideband 5G systems, and 140-GHz 6G phased arrays. 
His group has also developed large wafer-scale phased 
arrays for mm-wave applications and proven them at 
60 GHz, 110 GHz, and 140 GHz. For example, for poten-
tial applications in 6G, an eight-channel transmit array 
and an accompanying eight-channel receive array were 
demonstrated using Si CMOS-silicon on insulator 
(SOI) technology, shown in Figure 2 [6], [8]. Antennas 
were directly mounted on top of the Si ICs, using metal 
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patterns on a quartz plate; the tight integration was 
made possible by the small 1-mm distance between 
antennas. Local oscillator (LO) routing around the 
chip was done at a subharmonic, and upconversion to 
140 GHz was carried out at each channel, as shown in 
Figure 3. Prof. Rebeiz and his former students founded 
Extreme Waves, a company in San Diego developing 
and delivering phased arrays for SATCOM, 5G, and 
specialized functions.

In addition to phased arrays, the Rebeiz group has 
demonstrated a variety of key building block circuits 
for high-frequency systems, including power ampli-
fiers (PAs) (as detailed in the section below), LNAs, 
phase shifters, filters, and voltage-controlled oscillators. 
Another ground-breaking circuit for instrumentation 
and optical communication applications is a distributed 
amplifier with over 100 GHz bandwidth, 33 dB gain, 
and peak output power of 23 dBm, shown in Figure 4 [9].

Microwave and mm-Wave PAs
The overall range and efficiency of wireless transmit-
ters are typically determined by the PA; accordingly, 
PAs have been the topic of intensive research. For 

mm-wave communications (notably 5G), the use of 
antenna arrays and the resultant spatial power com-
bining has meant that peak output power in the neigh-
borhood of 20 dBm is adequate to provision a given 
antenna, and this is in the realm of what be achieved 
with Si technology. Bulk CMOS, CMOS-SOI, and SiGe 
HBT are all candidates for use in both handsets and 
base stations, along with GaN PAs for very high power 
transmitters. Efficiency is a central concern, which is 
exacerbated by the fact that amplifiers must operate in 
backoff due to the high peak-to-average power ratio for 
the signals, typically 8–9 dB. Linearity requirements 
provide an additional challenge: while at microwave 
frequencies, digital predistortion is typically used to 
mitigate PA nonlinearity; for the mm-wave antenna 
arrays with large numbers of individual PAs and wide 
bandwidth requirements (200 to 1,000 MHz), the PA 
intrinsic linearity must be sufficient to amplify signals 
with error vector magnitude down to 3–5%.

A primary focus of 5G and 6G PA research at UCSD 
has been CMOS-SOI, which provides a variety of 
advantages. Excellent isolation between devices facili-
tates series-connecting FETs (“stacking”) to enhance 
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their voltage-handling capability. The buried oxide 
decreases the parasitic capacitance to the substrate. In 
the GlobalFoundries 45-nm CMOS-SOI technology, 
high-resistivity (>1,000 ohm-cm) Si substrates are used, 
virtually eliminating capacitance of interconnect lines 
to the substrate. High figures of merit ft and fmax in 
the vicinity of 300–400 GHz are also obtainable.

In conjunction with the 6G-oriented transceiver at 
140 GHz described previously, Prof. Rebeiz’s group 
demonstrated a ground-breaking Si 45-nm CMOS-SOI 
PA for use at 130–150GHz, showing the potential of 

Si-only technology for practical use in wireless trans-
mitters above 100 GHz [10]. As shown in Figure 5, the 
four-stage PA achieves a saturated output power of 
17.5 dBm and an efficiency of 13% at 140 GHz.

One target of UCSD’s research for mm-wave 5G 
(24–40 GHz) has been demonstrating high power and 
efficiency. With the use of pMOS rather than nMOS, in 
Asbeck’s group, power-added efficiency (PAE) up to 
50% and output power up to 22 dBm have been dem-
onstrated in a simple two-stack differential amplifier 
[11], as shown in Figure 6. The use of pMOS enables 
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increasing the power supply voltage without sacrific-
ing reliability, because of superior resistance to hot 
carrier injection and increased ability to handle high 
voltage when the device is off (in class B or deep class 
AB operation). The PA uses only a positive supply (con-
nected to the source) to maintain compatibility with 
conventional nMOS circuits.

Another target of research has been to provide high 
efficiency in backoff. Doherty amplifiers have been 
implemented in nMOS-SOI and pMOS-SOI, using low-
loss output impedance matching and power combin-
ing designed using the Ozen technique [12], [13], [14]. 
Figure 7 illustrates the circuit diagram for a pMOS 
Doherty, which achieves 20% PAE at 8 dB backoff from 
the saturated output power of 23.5 dBm at 27 GHz. It 
is notoriously difficult to maintain good linearity in a 
Doherty PA; digital predistortion is almost always used 
in the microwave frequency range. Here good linear-
ity is achieved with multiple active bias networks that 
detect the transmitted power on the chip with FET-
based rectifiers and adjust the gain by controlling gate 
biases accordingly. In high-frequency Doherty amplifi-
ers, this is particularly valuable to facilitate a transition 

for the peaking amplifier from deep class C to class AB 
as the input power increases, without sacrificing gain. 
The active bias networks are also used to mitigate soft 
saturation effects in amplifier AM–AM characteristics.

Improved efficiency at backoff can also be achieved 
using envelope tracking (ET). This technique, based on 
the use of a dynamically varied power supply voltage, 
has been the subject of extensive past development 
at UCSD for base station and handset applications at 
1–2 GHz [15], [16] and is now in use in many smart-
phones. ET research is continuing with a primary 
focus on base station applications for 4G and 5G in sub-
6-GHz bands. One novel theme being explored by Prof. 
Hanh-Phuc Le’s research group is based on a multiple 
switched capacitor network [17], [18] to supply a menu of 
fixed supply voltages to a GaN base station 5G-NR PA,  
allowing it to select the most efficient voltage on a 
symbol-by-symbol basis [19]. Another recent result is 
a tour-de-force ET amplifier system achieved by col-
laborative industry–CWC research (led by Mitsubishi 
Electric and Nokia/Bell Labs). A 3.6- to 4.0-GHz ET 
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amplifier was demonstrated using a GaN soft-switch-
ing buck converter feeding a GaN 0.15-μm HEMT PA, 
in conjunction with a digital front-end environment 
for signal generation and predistortion [20]. ACLR was 
below −45 dBc, and total efficiency reached 47% at 
3.6 GHz, as shown in Figure 8.

IoT: Wake-Up Receivers
Most IoT devices require RF ICs to communicate informa-
tion among each other and/or with local infrastructure. 

Many of these devices use wireless standards such as 
Bluetooth Low Energy, Wi-Fi, Zigbee, LoRa, NB-IoT, 
etc.; however, these standards were designed to sup-
port high throughput, from tens of kbps to tens of 
Mb/s. As such, the power consumption of these devices 
is commensurately high, or they lower power by turn-
ing off the radios for extended periods, lengthening the 
latency of connecting the device to the network. How-
ever, many emerging IoT applications do not require 
high average throughput: consider, for example, appli-

cations in perimeter detection 
or infrastructure monitoring, 
where communication is not 
needed until relatively infre-
quent events occur. Unfortu-
nately, most radio standards 
require frequent packet com-
munication for network syn-
chronization purposes, even if 
there are no data to transmit. 
This stay-on-to-communicate 
approach can reduce battery 
life significantly [21], [22].

Wake-up receivers (WuRXs) 
provide an elegant solution by 
continuously monitoring the 
RF spectrum for prespecified 
event signatures (i.e., wake-up 
messages) that tell the WuRX to 
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enable the device to take further action, such as turn-
ing on the main radio. If a wakeup event is detected, 
the normal main radio can provide high-throughput 
communication without requiring frequent synchro-
nization packet communication. The WuRX provides 
energy savings if its average power consumption is 
lower than the power of the main radio at the target 
latency for device response to a query over the network. 
For many standards-based radios, the target latency is 
imposed by the standard or by an application-depen-
dent communication latency constraint. If the active 
WuRX power consumption is low, the energy savings 
can be substantial.

With support from the Defense Advanced Research 
Projects Agency, researchers in the groups of Prof. 
Drew Hall, Patrick Mercier, and Gabriel Rebeiz devel-
oped several WuRXs with nanowatt-level power 
consumption, less than the leakage power of a coin 
cell battery. The first radio 
demonstrated a 113.5-MHz 
OOK-modulated WuRX that 
achieved −69 dBm sensitivity 
with only 4.5 nW, as shown in 
Figure 9(a) [22], [23], [24].

This work aggressively 
reduced the power by 1) 
reducing the baseband signal 
bandwidth to 300 Hz, suitable 
for many event-driven appli-
cations, to aggressively filter 
noise; 2) employing a high-Q 
transformer/filter that pas-
sively amplifies the voltage of 
the incoming RF waveform 
by 25 dB and filters adjacent 
channel noise and interfer-
ers; 3) simultaneously demod-
ulating and amplifying the 
wake-up signal via a high-
impedance dynamic thresh-
old MOS envelope detector 
(ED) with subthreshold active-
inductor biasing; 4) digitizing 
the ED output via a regenera-
tive comparator with kickback 
elimination; 5) generating the 
baseband clock via a 0.9 pJ/cycle,  
1.1 nW relaxation oscillator  
[25]; 6) decoding the received 
OOK signal modulated with 
a custom 16-bit code word 
using a high-Vt subthreshold 
digital baseband correlator; 
and 7) operating all circuits at 
0.4 V to minimize static and 

dynamic power. When published in 2017, this work 
reduced the power consumption by over 1,000× from 
the state of the art. Follow-on work demonstrated that 
this concept works at higher frequencies (e.g., 400 MHz 
and 9 GHz); as shown in Figure 9(b), it can have sensi-
tivities better than −100 dBm, and it can be made robust 
against process, voltage, and temperature (PVT) ​varia-
tion [26], [27], [28].

IoT: Low-Power MedRadio
The IoT era is experiencing rapid growth with the 
deployment of a wide variety of sensor nodes, most 
notably for healthcare monitoring and industrial auto-
mation. An important distinction from classic radios is 
that such IoT nodes only need to wirelessly communi-
cate over short distances, typically ~1–2 meters, to reach 
a nearby data aggregator (e.g., smartwatch or smart-
phone). Owing to their autonomous and unobtrusive 
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nature, enabling high deployment lifetimes through 
ultralow-power (ULP) operation is critical and often 
achieved through aggressive duty cycling.

Simplistic transmitter topologies are preferred for 
this application. In contrast to conventional radios, the 
PA in a short-range radio is not the highest power-con-
suming block due to the low output power. Instead, the 
frequency synthesizer or phase-locked loop (PLL) con-
sumes a significant fraction of the overall transmitter 
power. The MedRadio/ISM band (~400 MHz) is widely 
used for the aforementioned applications due to its rel-
atively low carrier frequency and suitability for short 
distances. To generate this RF carrier in a ULP manner, 
ring oscillator-based injection-locked clock multipliers 
with small frequency multiplication factors (~8–12×) 
are regarded as state of the art [29], [30], [31], [32].

Toward this end, a new technique for PVT-robust, 
calibration- and regulation-free synthesis of the RF 
carrier was developed in Prof. Drew Hall’s group 
based on generating poly-phasors at 50 MHz with 
no power overhead [33]. This is accomplished using 
a passive polyphase filter directly integrated within 
a crystal oscillator followed by an 8× edge combiner 
to synthesize the RF carrier with −109 dBc/Hz phase 
noise at a 100-kHz offset, as illustrated in Figure 10. 
A dual-supply, inverse class E PA is implemented for 
high efficiency at low output power (−17.5 dBm). Open-
loop operation permits aggressive duty cycling (<40 ns 
startup time). This work demonstrated a BPSK, PVT-
robust transmitter fabricated in 22 nm fully-depleted 
SOI technology when operated from a 0.4-/0.2-V sup-
ply consuming 67 μW with 27% global efficiency. This 
radio demonstrates excellent robustness to process 
variation, consistent performance across –30 to 90 °C, 
and complete insensitivity to voltage variation. This 
work achieves the best energy efficiency (67 pJ/bit) 
and lowest power (67 µW) among reported sub-1 mW 

narrowband transmitters, significantly advancing the 
state of the art for low-power, short-range radios.

Mixed Signal Circuits: Phase-Locked Loops
The relentless evolution of wireless transceiver stan-
dards toward higher bandwidths, higher-order modu-
lation, and higher receive sensitivities imposes 
increasingly stringent requirements on local oscillator 
frequency synthesis in terms of rms jitter, spot phase 
noise, and spurious content. For example, in the 5G NR 
wireless standard, error vector magnitude requirements 
for higher than 64 quadrature amplitude modulation 
require a LO frequency synthesizer with a total rms inte-
grated jitter less than 90 fs, which is very challenging.

The best-performing present-day PLLs are analog 
PLLs, i.e., PLLs based on conventional analog circuitry, 
so analog PLLs are the predominant means of frequency 
synthesis in high-performance commercial wireless 
transceivers. Unfortunately, analog PLLs require large-
area loop filters, are not inherently reconfigurable, 
and are not amenable to digital calibration. Yet, recon-
figurability is essential as modern wireless standards 
require handling widely variable data rates, and digital 
calibration is increasingly necessary to address issues 
associated with the low supply voltages, high device 
nonlinearity, poor signal isolation, and device leakage 
of highly scaled CMOS technology nodes as well as 
for the cancellation of mutual interference among the 
multiple on-chip PLLs required for carrier aggregation. 
In contrast, digital PLLs have very small loop filters, 
are easily reconfigurable, and are amenable to digital 
calibration, but they have yet to achieve the phase error 
performance of their analog counterparts [34, and refer-
ences therein]. To date, the best-performing published 
digital PLLs are based on analog sampling or digital 
bang-bang (BB) architectures. However, both types of 
PLLs have practical issues. Sampling PLLs suffer from 
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poor reference spur performance and high PVT sensi-
tivity because their loop dynamics are highly depen-
dent on the slope of the sampled waveform around its 
midscale crossings. BB digital PLLs suffer from lock-
ing issues under large frequency steps, loop dynamics 
that depend on the PLL’s noise sources, and require 
impractically high reference frequencies to sufficiently 
suppress the quantization error introduced by the BB 
phase detector. Furthermore, the digitally controlled 
oscillators (DCOs) required in digital PLLs lead to a 
serious, but rarely acknowledged, intermittent phase 
noise degradation phenomenon called spectral breathing.

The ongoing digital PLL research performed by 
Prof. Ian Galton’s group aims to develop new tech-
niques that systematically eliminate the limitations of 
present-day digital PLLs with the objective of elevat-
ing their performance to that of the best present-day 
analog PLLs while retaining the digital PLL benefits. 
Research results so far include the development of a 
robust frequency-to-digital converter-based digital 
PLL architecture, several phase noise and spurious 
tone reduction techniques based on time amplification 

and digital calibration, and a solution to the spectral 
breathing problem [34], [35], [36], [37], [38], [39]. The 
group’s first-generation 6- to 7-GHz versions of these 
PLLs, illustrated in Figure 11, achieve 145-fs rms ran-
dom jitter performance without the abovementioned 
drawbacks [38], and the next-generation version cur-
rently under design is targeting 75-fs rms jitter perfor-
mance with best-of-class spurious tone performance.

Mixed Signal Circuits:  
Digital to Analog Converters
The most significant sources of static and dynamic non-
linear error in practical high-speed, high-resolution, 
continuous-time RF digital to analog converters (DACs) 
are clock skew, component mismatches, and intersym-
bol interference (ISI). Most published digital calibra-
tion techniques aimed at addressing these issues only 
reduce the static portion of such error, which leaves 
dynamic error as a major limitation. Techniques such 
as return-to-zero signaling can be used to mitigate ISI, 
but they generally have undesirable side effects, such as 
halving the signal power and significantly increasing 
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sensitivity to clock jitter, which greatly increase power 
consumption and/or decrease signal-to-noise-and-dis-
tortion ratio (SNDR). Consequently, clock skew, com-
ponent mismatches, and ISI typically limit the Nyquist 
band SNDR of present-day CMOS RF DACs to less 
than 65 dB. Nonetheless, RF DACs with Nyquist band 
SNDRs of well over 65 dB are increasingly necessary 
for high-performance wireless applications such as 5G 
cellular base station transmitters. The ongoing DAC 
research performed by Ian Galton’s group at UCSD 
aims to address this disconnect via digital calibration 
techniques that adaptively measure and cancel both 
static and dynamic DAC errors from clock skew, com-
ponent mismatches, and ISI in real time.

The difficulty that has prevented most published 
DAC calibration techniques from suppressing dynamic 
error arises from a property inherent to continuous-
time DACs. Such DACs generate a continuous-time 
output pulse for each input codeword, and the output 
pulse has a bandwidth that far exceeds the DAC’s sam-
ple rate because its duration is time limited to one clock 
period. Therefore, any technique that cancels dynamic 
error either must do so over a bandwidth much wider 
than the DAC’s signal bandwidth, which is unlikely to 
be practical given the multi-GHz sample rates required 
of RF DACs, or must perform frequency selective 
cancellation over a single Nyquist band. Prof. Gal-
ton’s group recently developed the first technique to 
accomplish this that does not require elaborate manual 

tuning [40]. This mismatch-noise cancellation (MNC) 
technique cancels static and dynamic errors from clock 
skew and component mismatches over an RF DAC’s 
first Nyquist band. The initial version of the MNC 
technique has been used to demonstrate a 600  MS/s 
DAC IC that achieves a Nyquist band SNDR of 77 dB, 
as illustrated in Figure 12 [41]. This circuit still has two 
limitations: it oversamples the DAC output, which lim-
its the sample rate of the DAC IC to 600 MHz, and it 
does not cancel ISI. The group has since developed a 
subsampling version of the MNC technique that elimi-
nates the oversampling requirement [42] and a separate 
technique to address ISI.

Beam-Steering Ambient Wi-Fi and Bluetooth 
Signals for ULP IoT Devices
Wireless security cameras, wearable devices, pet health 
tracking systems, wireless earbuds, augmented reality 
glasses, and more are all starting to take hold in today’s 
marketplace. However, there is a major problem faced 
by many of these IoT applications: power consump-
tion. Most of these devices are designed to be small 
and portable, and yet some of these devices consume 
so much power that they must be plugged into the wall 
(e.g., wireless security cameras), or the devices must 
be so small they do not have room for a large battery, 
and as a result, their battery life is poor (e.g., wireless 
earbuds). A key culprit for this is the relatively high 
power consumption of the radio circuits that enable 
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wireless communication. Wi-Fi, and even Bluetooth 
Low Energy—despite “low energy” being in the name 
of the standard—often dominate the overall power of 
such devices, and thus, such devices either require wall 
power or have a short battery life.

In the groups of Prof. Patrick Mercier and Dinesh 
Bharadia, work envisions a future where devices like 
wireless security cameras do not have to be plugged 
into the wall and can be placed anywhere, or where the 
battery life of other IoT devices can be 100 times longer. 
The key to enabling this vision involves not generating 
the Wi-Fi or Bluetooth signals on the IoT device itself 
but rather leveraging the fact that smartphones and 
routers, which either have a large battery or are already 
plugged into the wall, do a very capable job of gener-
ating these signals already. By hitchhiking on top of 
these existing transmissions, the IoT device can avoid 
the power consumption of expensive circuits operating 
at GHz frequencies.

A technique to achieve this is backscatter com-
munication, whereby an incident Wi-Fi or Bluetooth 
signal arrives at an antenna, and depending on what 
impedance is loading the antenna on the IoT device, 
a certain portion of the signal will be reradiated back 
to the environment. By dynamically controlling what 
kind of impedance is connected to the antenna, addi-
tional data can be modulated on top of the incident 
signal. While this forms the basis for RFID systems, 
and some previous work on Wi-Fi backscatter has 
been demonstrated using discrete parts [43], [44], our 
recent previous work showed that Wi-Fi communica-
tion can be achieved at ~1,000 times lower power than 
conventional approaches using this technique, a major 
improvement toward enabling the next-generation IoT 
vision [45], [46], [47].

The key challenge in backscatter communication, 
however, is range: since there is no active transmit-
ter on the IoT device, the reradiated signal is weak 
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and will only go so far before being lost to noise (e.g., 
10  meters in previous work), as shown by the link 
budget in Figure 13. In fact, due to limitations set by 
the FCC, standards, or receiver noise constraints, the 
only way to improve range in backscatter systems is 
to either improve insertion loss at the tag or add mul-
tiple input/multiple output (MIMO) gain. Our most 
recent work featured improvements on both fronts 
[48]. For example, we developed a transmission-line-
free single-antenna backscatter modulator that enables 
fully reflective single-side-band QPSK signaling with-
out requiring a power combiner, thereby enabling a 
low overall insertion loss. Adding MIMO techniques 
on top of this normally requires precise control of 
the phase of a multi-GHz signal, which can consume 
significant amounts of power. In our latest work (Fig-
ure  14), we demonstrated this can be achieved with 

only microwatts of power by operating at baseband, 
thereby keeping the ~1,000 times power reduction in 
place, while increasing the range from 10 to 50+ meters 
[48] (Figure  15). We also demonstrated techniques to 
enable backscattering of Bluetooth signals, for an ~100 
times power reduction. These results represent a major 
step forward to making backscatter communication, 
and as a result small, tetherless IoT devices, a reality.

Outlook
Academic research continues to have a major role in 
advancing microwave and mm-wave technology for 
wireless communications. Many academic demonstra-
tions have been rapidly followed by industry. At UCSD, 
we appreciate that we have had access to a variety of 
advanced process nodes, which is important to push the 
state of the art. Although the coverage here is limited to 

highlights and short descrip-
tions, interested readers are 
encouraged to view the attached 
references or contact the authors 
for further information.
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