

Development of a Smartphone-based Pulse Oximeter with Adaptive SNR/Power Balancing

Tom Phelps, Haowei Jiang, and <u>Drew A. Hall</u> University of California, San Diego

http://www.BioEE.ucsd.edu

Motivation

Millions of people worldwide suffer from preventable diseases, but lack access to adequate healthcare equipment.

- Non-invasive measurement of peripheral oxygen saturation (SpO₂) and heart rate (HR)
- Commonly used to monitor:
 - Pregnancies (i.e., preeclampsia)
 - Chronic respiratory illnesses (i.e., COPD, asthma, CF) and pneumonia
 - Cardiovascular diseases
 - Sleep apnea

Existing Pulse Oximeters

Clinical-grade

High accuracy due to advanced signal processing and (mostly) stationary patient **Problem:** High cost (~\$1k) and high power (~10W) \rightarrow not portable

Lower accuracy at a modest cost (\$40-\$200) **Problem:** Limited computational power, motion artifacts \rightarrow not sensitive

Challenge: Achieving high accuracy at low cost

Mobile Phones

Inertial Sensors Biometric Sensors Wireless Radios

How can one tap into the mobile phone for mHealth devices?

Smartphone-based Pulse Oximeter

Use the infrastructure in a mobile phone to realize a low cost (but high accuracy) portable pulse oximeter

Chengyang Yao, Alexander Sun, and Drew A. Hall, "Efficient Power Harvesting from the Mobile Phone Audio Jack for mHealth Peripherals", *Global Humanitarian Technology Conference (GHTC)*, Seattle, WA, October 8-11, 2015

Circuit Implementation

Current-mode LED Driver:

- Control $V_{\text{LED}} \rightarrow I_{\text{LED}} \rightarrow \text{Light}$ intensity
- AC-coupled to right audio channel
- C₂ filters out interference

Photoreceiver:

- Zero-bias photodiode → low dark current → save voltage headroom
- AC-coupled to mic. Channel
- Clamp diodes to protect mic input

Signal Processing

Signal processing entirely done on the phone! Easily updated, adaptive, and more computationally intensive algorithms possible.

Power and SNR Optimization

$$Error = \sqrt{(HR_{\text{\%}Err}HR_{\sigma})^2 + (SpO_{2,\text{\%}Err}SpO_{2,\sigma})^2}$$

Power and SNR Optimization

$$Error = \sqrt{(HR_{\text{\%}Err}HR_{\sigma})^2 + (SpO_{2,\text{\%}Err}SpO_{2,\sigma})^2}$$

Measurement Results

2110 Patient Simulator

Masimo RAD 87 used to collect true HR and SpO₂

Despite low-cost and simplicity, HR accuracy < 1.8% and $SpO_2 < 3.7\%$

Conclusion

- Developed a low-cost (BOM < \$20) smartphonebased pulse oximeter
- Adaptive SNR and advanced signal processing techniques enabled by using the smartphone for all computation

Thanks!

Gabby Kang

