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Abstract—This paper presents a 163 20 CMOS biosensor array
based on electrochemical impedance spectroscopy (EIS), a highly
sensitive label-free technique for rapid disease detection at the point-
of-care. This high-density system implements polar-mode detection
with phase-only EIS measurement over a 5 kHz - 1 MHz frequency
range. The design features predominantly digital readout circuitry,
ensuring scalability with technology, along with a load-compensated
transimpedance amplifier, all within a 140 3 140 lm2 pixel. The
architecture enables in-pixel digitization and accumulation,
which increases the SNR by 10 dB for each 103 increase in read-
out time. Implemented in a 180 nm CMOS process, the 3 3 4
mm2 chip achieves state-of-the-art performance with an rms
phase error of 0.035% at 100 kHz through a duty-cycle insensi-
tive phase detector and one of the smallest per pixel areas with
in-pixel quantization.

Index Terms—Point-of-care (PoC), electrochemical impedance
spectroscopy (EIS), biosensor array, phase-to-digital converter.

I. INTRODUCTION

POINT-OF-CARE (PoC) testing is a promising patient-
centric paradigm that enables rapid biomarker detection near

the patient, rather than the lengthy turn-around time associated
with centralized facilities. PoC testing facilitates the diagnosis
and monitoring of chronic diseases and deadly infections. The
key objective of PoC testing is to allow for quick medical
decision-making without sophisticated laboratory equipment so
that appropriate treatment can be implemented and managed,
leading to improved health and economic outcomes.

Some applications, such as DNA microarrays [1], [2], aptamer
arrays [3], [4], and immunosignaturing [5], require high-density
biosensor arrays consisting of hundreds to thousands of individu-
ally addressable sensors on a monolithic substrate for multi-
analyte detection. These biosensor microarrays conventionally

rely on optical detection methods like fluorescence and absor-
bance spectroscopy, exploiting light-biomolecule interactions to
detect and quantify diverse analytes [6], [7], [8], [9]. However,
these techniques require bulky optics [10], making them unsuit-
able for PoC applications.

Electrochemical biosensors are an attractive alternative to
optical techniques due to their accuracy, speed, and simplicity
[11], [12], [13], [14], [15]. Their ease of integration with CMOS
circuits makes them highly miniaturizable and cost-effective.
Electrochemical impedance spectroscopy (EIS) is a real-time,
label-free sensing technique that measures changes in the inter-
facial properties of the electrode-electrolyte interface [16],
[17], [18]. In EIS, a low-amplitude sinusoidal voltage signal
(�5-10 mV) swept across a frequency range (mHz – MHz) is
applied to the sensor surface, and the induced current is mea-
sured to back-calculate the impedance (Fig. 1).

Fast Fourier transform (FFT) and frequency response analysis
(FRA) are typical measurement techniques for the impedance
analysis of electrochemical cells [19]. FFT analysis yields faster
results using a multi-frequency input (e.g., multi-sine, step/pulse
waveforms, etc.) but requires anti-aliasing filters and a digital
signal processor to extract each frequency component and cor-
rect nonlinearity errors. It is suitable for time-variant systems
with single-site testing. In contrast, FRA applies a single-
frequency sinusoidal stimulus and sweeps the input to character-
ize the impedance across the frequency range of interest. This
minimizes the signal processing effort and the effects of distor-
tion from the cell, simplifying the measurement circuitry and
making it more suitable for high-density arrays [15], [19].

Fig. 1. Overview of a high-density CMOS-based EIS biosensor array.
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Within FRA, the architectures can be classified based on the
data interpretation strategy used. Nyquist (Re{Z} vs. Im{Z}) and
Bode (jZj and /Z vs. frequency) plots are common representa-
tions for impedance spectroscopy. Unsurprisingly, the circuit
architecture often falls out of the choice of data representation.
Many designs implement I/Q demodulation with lock-in detec-
tion to capture the real and imaginary parts of the impedance
[20], [21], [22]. This architecture consists of two identical chan-
nels with resource-heavy multipliers and low-pass filters. More-
over, the accuracy is highly sensitive to synchronization between
the measured and demodulation quadrature signals. Lock-in detec-
tion employs one of three modulation schemes: pure sine, square,
or pseudo-sine wave. Pure and pseudo-sine wave modulations
introduce frequency-dependent phase errors in the reference
generation block and bandwidth-limited readout circuits. The
induced frequency-dependent errors necessitate complex cali-
bration schemes or incorporate extra blocks like a phase-locked
loop (PLL) [23]. Alternatively, polar mode (magnitude/phase)
detection [24], [25] eliminates the quadrature signal generation
and demodulation, avoiding such synchronization issues. How-
ever, it requires separate magnitude and phase detection blocks
with minimal design overlap and different specifications [26].
The magnitude block, in particular, requires a high dynamic
range [21], which makes its design especially challenging in an
area-constrained setting.

This paper presents a 16 � 20 CMOS biosensor array with
on-chip electrodes using phase-only EIS over a frequency
range of 5 kHz – 1 MHz, as shown in Fig. 1. This high-
density array has in-pixel averaging, which improves the
SNR by 10 dB for each 10� increase in readout time when
operated in fixed frequency time scan mode. This is accom-
plished using a phase modulation detection scheme, which
relaxes the circuit complexity and lets each pixel have its
own time-based digitizer. Combined with a mostly-digital
architecture and transimpedance amplifier (TIA), this
approach has one of the smallest areas per pixel with on-chip
sensors and quantization, making the entire chip scalable
with technology. The chip achieves a state-of-the-art phase
error of 0.035% at 100 kHz through a duty-cycle insensitive

phase detector. Hybridization and aptamer-antigen binding
experiments demonstrate the intended use case where a single
sample is run and assayed for multiple analytes. This paper
extends the work originally reported in [27].

The rest of this paper is organized as follows: Section II
explains the phase modulation detection technique. Section III
analyzes the system architecture and compares it against [27],
followed by the circuit-level implementation in Section IV.
Section V presents the results of the electrical and biological meas-
urements. Finally, concluding remarks are given in Section VI.

II. PHASE MODULATION DETECTION TECHNIQUE

To appreciate the motivation behind using a phase modulation
detection scheme, it is essential to understand the equivalent
circuit model of the system and the changes it undergoes during a
binding event. DNA is used as an example to explain the underly-
ing principle, but this models any affinity interaction. Each
on-chip electrode is immobilized with single-stranded DNA
(ssDNA) capture probes. The probe sequence is complementary
to the target DNA, providing the assay’s specificity. When the
sample is added, it selectively hybridizes with the probe to form
double-stranded DNA (dsDNA). Fig. 2(a) shows the equivalent
circuit using the well-known Randles circuit model of the
electrode-electrolyte interface. In this model, Rs captures the
ohmic resistance of the electrolyte, which depends on the solution
salinity [28]. This is followed by a parallel combination of Rd and
Cd, which model the diffusion layer consisting of the target and
capture DNA probes. Finally, the electrode interface is described
through the double-layer capacitance, Cdl, shunted by the charge
transfer resistance, Rct [28]. The contribution of Rct can be
neglected since the process is non-faradaic [26]. When the DNA
hybridizes, the diffusion layer’s charge distribution is altered,
decreasing Cd [20], [29].

To comprehend its impact on impedance modulation, the
change in magnitude and phase are plotted in Fig. 2(b). The
Bode plot is derived by subtracting the magnitude and phase
plots of the equivalent electrode impedance model shown in
Fig. 2(a) before and after DNA hybridization. Using typical

Fig. 2. (a) Equivalent electrode impedance model annotated with contributing factors (ions, DNA, double-layer capacitance, etc.). (b) Simulation results demonstrat-
ing the change in magnitude and phase before and after DNA hybridization.
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values for a 100 � 100 mm2 gold electrode in 4� saline-sodium
citrate (SSC) buffer (Cdl ¼ 4.5 nF, Rd ¼ 10 MX, Rs ¼ 1 kX, Cd

¼ 3 nF), the simulation shows the system acting like a low-pass
filter, settling to Rs at higher frequencies. SSC buffer is com-
monly used for hybridization and washing in assays with nucleic
or ribonucleic acid species. The DNA hybridization-induced
capacitance shift alters the filter cut-off frequency, leading to an
�8.5% change in magnitude and phase in the 1 kHz–1 MHz
range. Notably, the absolute magnitude change exceeds the
absolute phase change by more than 100�. This results from the
inherent folding property of the inverse tangent function that
characterizes the system’s phase. Consequently, utilizing only
the phase of the complex impedance to detect binding simplifies
the readout circuitry for two key reasons: 1) Removing the mag-
nitude detector conserves power and area, and 2) The magnitude
detection block requires more resources due to the wider
dynamic range.

III. ARCHITECTURE

A. System-Level Implementation

The biosensor chip consists of a 16� 20 pixel array, of which
one row serves as reference pixels, and the remaining 19 are
active pixels. The active pixels in each column share a reference
pixel located in the middle of the column to minimize the routing
delay. Fig. 3 depicts the block diagram of the in-pixel circuitry.
Each pixel consists of an on-chip electrode, a transimpedance
amplifier, and a phase detector followed by a time-based ADC.
The reference pixel has an identical electrode and amplification
circuitry with an extra delay cell. An excitation voltage applied
through an off-chip reference electrode induces a current ampli-
fied by a resistive feedback transimpedance amplifier (R-TIA).

This design implements EIS over the 5 kHz – 1 MHz frequency
range where the induced currents are in the mA range, requiring a
modest transimpedance gain, which is neither area-limiting nor a
major noise contributor. Hence, an R-TIA was chosen instead of
a capacitive-feedback TIA.

The phase information is extracted from the zero crossings.
An inverter chain after the R-TIA transforms the analog output
into a rail-to-rail square wave, usig and uref from the signal and
reference electrode, respectively, while maintaining the zero
crossings. The phase of usig is then compared with uref via a
duty-cycle insensitive D flip-flop (DFF)-based phase detector
(PD) to produce a pulse, udiff, whose width is linearly propor-
tional to the phase difference. This pseudo-differential measure-
ment cancels common-mode variation, such as temperature drift
and process variation. A delay cell was added in the reference
path to avoid extremely narrow udiff pulses for near-zero phase
difference, which would degrade the SNR of the system and
cause a dead zone in the time-to-digital converter (TDC). A 250
ns delay was implemented to account for noise and mismatch
from the in-pixel circuitry. This architecture is mismatch-tolerant,
as the mismatch between the reference and signal path is con-
verted into a constant offset at the PD output.

The pulse width is traditionally digitized using an oscillator-
based TDC where the counter output corresponds to the number
of delay elements that have transitioned during udiff. A gated
ring oscillator (GRO)-based TDC enhances this process through
first-order noise shaping of its quantization noise by preserving
the oscillator state between measurements [30]. In short, each
pixel’s dedicated TDC allows in-pixel pulse averaging, enabling
a trade-off between the readout time and noise. The accumula-
tion of N pulses scales the signal by N, while the noise, which
adds in power, scales by �N. This improves the SNR by 3 dB for
every doubling of the integration time, assuming the phase noise
is spectrally white within the frequency range of interest. The
per-pixel TDC approach also eliminates a complex switching
network with a shared ADC architecture. The digital output,
Dout, is read using a serial peripheral interface (SPI).

Two key modifications were made to enhance the perfor-
mance and robustness compared to the previously reported
design [27]. First, the TIA was changed from Miller compen-
sated to load compensated, reducing the area by >2�. This is
crucial for minimizing pixel area while enhancing stability
against process, voltage, and temperature (PVT) variation and
electrode impedance. Second, the PD was upgraded to an edge-
sensitive implementation, improving the linearity by ensuring
monotonicity and insensitivity to the input duty cycle. This also
makes the circuit mismatch and PVT robust.

B. Frequency Compensation of the TIA

The small-signal model of the sensor interface consisting of
an electrochemical cell and the TIA is shown in Fig. 4(a). A
simplified model of the electrochemical cell [Fig. 2(a)] is used
for hand calculation purposes. The amplifier is modeled as a
single-pole amplifier with an open-loop transfer function a(s)
and feedback resistor RF. The block diagram illustrates the
strong coupling between the TIA and electrochemical cell,

Fig. 3. (a) Block diagram of the in-pixel circuitry and (b) waveforms at each
stage demonstrating operation.
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with multiple poles and zeros. Given that electrochemical cell
impedances are significantly influenced by variables such as the
voltage, electrolyte concentration, and electrode surface area, a
comprehensive analysis of the stability of this system is crucial.

The loop gain, L(s), and closed-loop voltage gain, H(s), of the
block diagram can be derived as

L sð Þ ¼ a sð Þ Zelec
RF þ Zelec

� a0
1þ s=pA

1þ sRsC0

1þ sRFC0 (1)

H sð Þ ¼ VoutðsÞ
VinðsÞ ¼ �aðsÞRF

1þ a sð Þð ÞZelec þ RF
� a0RFsC0

DðsÞ , (2)

where Zelec is the impedance of the electrochemical cell,
�(s) is a second-order polynomial, C0 ¼CDjjCDL, and ao and
pA are the dc gain and the open-loop pole of the amplifier,
respectively. The derivation neglects the pole-zero doublet
due to RD as it has a negligible impact on the phase response
and assumes Rs�RF, which is typical of electrochemical
AFEs. A detailed analysis can be found in [31].

The transfer function H(s) confirms the system’s bandpass
behavior. The double-layer capacitance, CDL, is large and gener-
ates a pole in L(s) at a few Hz and a zero at higher frequencies
[Fig. 4(b)]. The conventional pA-dominant pole approach to mit-
igate load sensitivity is unsuitable here for two reasons: 1) It
necessitates a large capacitor to realize a pole less than a few Hz
(below the pole from CDL), leading to a significant area increase,

and 2) An additional sizable feedback capacitor around the
TIA is needed to counteract the two poles now near dc, further
increasing the area. Both factors negatively impact the feasibil-
ity of a per-pixel ADC in a biosensor array.

To ensure stability in an area-efficient manner, this work
adopts “load compensation” [31], which uses the electrode
impedance (i.e., CDL) to realize the dominant pole of the system.
There is, however, a corner case where the solution resistance is
large (Rs > 1 kX), making the pole and zero from the electro-
chemical cell closely spaced, leading to poor stability. To deal
with this case, a small Miller capacitor Cm is added inside the
TIA to separate the non-dominant poles. Note that this pole is
normally not the dominant pole, so it is not strictly Miller com-
pensation. To further make the system resilient to electrochemi-
cal cell variation, an extra zero is added using a small feedback
capacitor connected between the input and output terminals of
the R-TIA. Fig. 4(c) plots the phase margin of the design across
variations of electrochemical cell parameters, demonstrating
that the compensation technique is robust. Note that variations
in cell parameters were simulated to ensure the phase never
crosses below 0�, confirming that phase margin is an appropriate
measure of stability and its traditional definition is applicable.

C. Noise Analysis

To design a noise-efficient AFE for high sensitivity, it is impor-
tant to understand the relative noise contributions. The noise
transfer functions (NTFs) were derived for each noise source as

NTFAMP � H sð Þ 1þ sC0 RF þ RSð Þ
sC0RF

(3)

NTFRF ¼
aðsÞRF

1þ a sð Þ (4)

NTFRS ¼ HðsÞ: (5)

The electrochemical cell noise can be modeled using the
Johnson–Nyquist formulation (i.e., 4kBTRs) for non-faradaic
electrodes [32]. Due to the typically high value of RD, the result-
ing noise current is minimal, rendering its contribution negligi-
ble in this context. Furthermore, the parasitic capacitances from
the electrostatic discharge (ESD) protection diodes and elec-
trode are small enough to contribute negligibly to the total
capacitance at that node. Fig. 5 shows that NTFAMP exhibits
gain peaking due to C0 within the relevant frequency range,

Fig. 4. (a) Simplified schematic of the AFE with sensor model. (b) Bode plot
annotated with dominant poles and zeroes. (c) Simulated phase margin across
electrochemical cell values (n¼ 60).

Fig. 5. NTFs of the electrochemical cell and the TIA.
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highlighting the critical role of the amplifier design. Although
NTFRs closely follows NTFAMP in this frequency range, its noise
contribution is negligible due to the low value of Rs. Moreover,
the noise from RF remains below that of the amplifier for modest
values (as applied in this design), establishing the amplifier as
the dominant noise source. Lastly, the PD compares the phase
of the signal and reference pixels, usig and uref, translating the
noise at the TIA output into jitter in the PD output (Tjit,PD),
which can be calculated as

Tjit,PD �
ffiffiffi
2

p Vn,tot

ATIAxs
, (6)

where ATIA is the output swing of the TIA, xs is the EIS fre-
quency, and Vn,tot is the total integrated noise of the blocks pre-
ceding the PD.

D. In-Pixel Averaging

The TDC performs the pulse width to digital conversion of
udiff by turning on the GRO when udiff is high and gating the
oscillator to preserve the phase during the off-state, as shown in
Fig. 6(a). The phase change of one stage in the GRO in each
stimulation period (Tstim ¼ 1/fstim) is:

uGRO ¼ 2pfGROTstimD, (7)

where fGRO is the free-running oscillator frequency, and D is the
duty cycle of udiff. Therefore, D can be obtained by quantizing
and normalizing uGRO to fGRO, and the quantized phase of the
GRO provides inherent first-order noise-shaping since uGRO is
an integrated version of udiff when the GRO is not reset [30].

Each PD pulse contains the desired phase difference, tsig, due
to the sensor impedance change but is corrupted by noise, tn1,2,

from the sensor, R-TIA, and other circuitry that is subsequently
converted into jitter, as shown in Fig. 6(b). Multiple PD pulses
accumulate in the GRO to improve the SNR. The accumulation
of N PD pulses enhances the SNR by 3 dB for each doubling of
the integration time, assuming the phase noise is spectrally white
within the frequency range of interest. The SNR improvement
relaxes the TIA and TDC noise requirements since it is no longer
necessary to lower the phase noise of a single pulse down to sub-
ns. As simulated in Fig. 6(c), with a signal equivalent to 1� at a
100 kHz stimulus frequency and 14 nsrms of jitter, the SNR
increases from 5.4 to 17.4 dB by increasing the integration time of
the TDC from 10 ms (a single PD pulse) to 160 ms (16 PD pulses).

IV. CIRCUIT IMPLEMENTATION

A. Electrodes

The working electrode (WE) is realized using the topmost
metal (metal 6) and placed above the TIA. The electrode has a
100 � 100 mm2 passivation opening, which is subsequently post-
processed to create gold-plated electrodes. Metal layers 4 and 5
shield the electrode from the rest of the circuitry. The electrode size
was chosen to be large enough to be functionalized using a robotic
spotter. On-chip ESD protection was implemented in each pixel
using two pþ/n-well diodes (0.2 mm2) between the electrode and
VDD or ground, respectively. The connection between the electrode
and the input of the R-TIA was made through a 160 X resistor and
another pair of identical diodes connected to VDD and ground.

B. R-TIA

The R-TIA was implemented using a two-stage, folded-
cascode amplifier with a �58 kX feedback resistor, RF, and a
6-pF feedback capacitor, CF, as shown in Fig. 7. The mA-level
induced current from the electrochemical cell means the TIA
output swing is �200 mV. Using a 1.8-V supply voltage, the
PMOS input pair (M1,2) is biased in subthreshold saturation for
noise efficiency with a gm/ID of �20.5 S/A. The input pair’s
flicker (1/f) noise is reduced by selecting PMOS transistors and
using large devices. Chopping is avoided to prevent the injection

Fig. 6. (a) Waveforms showing the concept of phase difference averaging by
accumulating several PD pulses. (b) A single PD pulse with jitter before and after
accumulation, and (c) simulation results showing the SNR increasing by 3 dB
with every 2� integration time.

Fig. 7. (a) Schematic of the R-TIA. (b) Circuit implementation of the amplifier
and (c) sizing.
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of switching noise into the WE, which can impact measurement
accuracy [33]. The load transistors (M3,4,9,10) are biased in satu-
ration and use source degeneration to attenuate the flicker noise.
The amplifier’s simulated 1/f noise corner frequency is �6 kHz,
and the thermal noise floor is 30 nV/

ffiffiffiffiffiffi
Hz

p
. The second stage pro-

vides a low output impedance to drive the feedback resistor.
In simulation, the unloaded dc gain is nominally 104 dB and
>89 dB across process corners and temperature.

The amplifier achieves a �75 MHz unity-gain bandwidth.
The small Miller capacitor creates a �15 kHz non-dominant
pole, which helps to improve the phase margin when Rs is large
(i.e., >1 kX). Since the top metal layer is used as an electrode,
the design excludes metal-insulator-metal (MIM) capacitors,
and the congested interconnect makes using metal-oxide-metal
(MOM) difficult. Consequently, all capacitors are implemented
using moscaps. The amplifier consumes 140 mW, with less than
25% used in the bias circuitry.

C. Phase Detector

The phase of the pixel, usig, is compared with the output of the
reference pixel, uref, to calculate the phase shift of the electro-
chemical cell, udiff. An XOR-based PD, a commonly used phase
detector in polar mode-based EIS systems [21], [24], [27], stands
out for its simplicity as a single logic gate. The average value of its
output is linearly related to the phase difference between the two
inputs. However, due to its inability to differentiate between rising
and falling edges, the XOR gate is sensitive to variation in the
input duty cycle, leading to a degradation in output linearity. Fig.
8(a) illustrates this through two input signals, uA and uB, with
non-50% duty cycles, DA and DB, respectively. Any phase change
of uB within the overlap region, uD, cannot be captured by the

XOR-PD, making it a ‘dead zone’ in the output characteristic
curve, as shown in Fig. 8(a) and 8(c). The dead zone’s location,
either near 0, p, or both, depends on the polarity of the duty cycle
error and mismatch. Deviation in the duty cycle (D-50%) is
directly related to the width of the dead zone. Circuit non-idealities
and PVT variation in the common-mode-setting self-biased
inverter can cause a shift in the duty cycle, while mismatch leads
to disparities in the duty cycles, DA and DB. This reduced the
linear range of [27] and made it highly sensitive to operating
conditions.

Ref [34] uses pulse generators and an S-R latch for the
intended outcome yet lacks measurement results or discussion
on PVT sensitivity. Inserting a divide-by-2 DFF-based clock
divider before the XOR gate to rectify the input signal duty
cycle does not address the problem, as it introduces additional
phase wrapping every quarter cycle, further complicating the
phase output unwrapping process. Other duty-cycle correction
circuits [35], [36] were considered but are resource-intensive
compared to the DFF-based phase detector.

To resolve this issue efficiently regarding power and area,
we used a duty-cycle insensitive DFF-based PD, a prevalent
phase/frequency detector circuit found in type-II PLLs [37],
modified for single-ended output, as shown in Fig. 8(b). It is an
edge-triggered sequential state machine that avoids dependence
on the duty cycle of the inputs [Fig. 8(d)]. The DFF-based PD is
mismatch and PVT tolerant, a critical feature for arrayed appli-
cations where the reference may be distant from the signal pixel.
Unlike charge-pump-based PLLs that focus on the average
value of the output differences, the PD is single-ended to avoid
additional circuits for interfacing with the TDC. The edge-
triggered nature of the DFF-based PD yields a monotonic trans-
fer function, facilitating the differentiation between phase
leading or lagging between reference and signal pixels. This also
eliminates the lead/lag detector [21], saving an extra output bit.

D. TDC and Digital Interface

Fig. 9 shows the TDC implementation using a 7-stage pseudo-
differential GRO to balance noise and power trade-off with udiff

as the gating signal. Each stage is a latch-based delay cell selected
for its superior 1/f noise performance. The GRO was sized such
that the leakage current introduces negligible error in the off-state
[38]. Simulation demonstrates that the GRO output decreases by

Fig. 8. Schematics and waveforms showing the dead zone of an (a) XOR-PD
and (b) DFF-PD. Transfer functions with duty cycle offset and mismatch of an
(c) XOR-PD and (d) DFF-PD.

Fig. 9. Schematic of the GRO and phase quantizer.
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14.4% (134 mV/ms) in the worst-case scenario (5 kHz input).
The post-layout free-running GRO frequency is �10 MHz, with
a 3r variation of 10.43% across chips and <1% across pixels
within the same chip. The GRO converts the duty cycle of udiff to
the phase domain, uGRO, for quantization, where the phase is
stored as a voltage on the parasitic capacitance (�12 fF) at the
output node of each stage when the GRO is off.

The phase is digitized using a coarse and fine structure where a
14-bit ripple counter increments every 2p rad phase change of
uGRO. Measuring the ring oscillator state using clocked sense
amplifiers adds p/7 fine quantization levels. The GRO output is
passed through a deglitch circuit before the counter to avoid
double-counting oscillator transitions. The counter was designed
for a 10 ms integration time without overflowing. The sense
amplifiers are implemented with dynamic comparators with a pre-
amplifier [39]. The preamplifier reduces the kickback noise of the
latch. In simulation, it was found that the worst-case kickback
was 107 mV due to the small GRO capacitance. The sense ampli-
fier clock was thus synchronized with the readout frequency of
fstim/N rather than fstim to further minimize kickback noise to the
GRO by reducing the error injecting into GRO output per cycle.

The combined coarse and fine data from the counter and the
latch conversions provide a 21-bit digital output for each pixel.
The array is read out using an SPI bus, where the outputs of the
16 pixels in each row are concatenated (336 bits) to balance the
number of output ports (16) and readout time. Thus, the clock
frequency for the SPI is 336� the readout rate.

V. MEASUREMENT RESULTS

This design was fabricated in a 180 nm CMOS process with a
1.8 V supply, occupying 3 � 4 mm2. As shown in Fig. 10, there
are 16 columns, each with 19 signal pixels and one shared refer-
ence pixel in the middle. Each pixel has an active area of 140 �

140 mm2 with a 100 � 100 mm2 electrode. A test structure at the
bottom of the chip, consisting of a copy of the signal and reference
pixel, was used for characterization. The measured power con-
sumption per channel was 197 mW. The power distribution shown
in Fig. 11 corresponds to the simulated power at fstim ¼ 100 kHz
for a full-scale udiff of p. The contribution of the reference pixel,
Pref, is accounted for by adding Pref/19 to each signal pixel. Of the
197 mW power consumption/channel, �78% of the power is con-
sumed by the R-TIA, while the GRO-TDC and datalink take 16%.

A. Electrical Characterization

The electrical performance was characterized using test struc-
tures on the chip with a mock electrochemical cell as a substitute
for both signal and reference electrodes, as shown in Fig. 12.
The equivalent impedance was matched with the theoretical val-
ues for a gold-plated 100 � 100 mm2 electrode (the same as the
on-chip electrodes) in 4� SSC (Cdl ¼ 4.5 nF, Rd ¼ 10 MX, Rs

¼ 1 kX, Cd ¼ 3 nF). The noise of a single cycle of udiff was
characterized by providing a constant 90� phase shift between
the reference and a signal pixel at a test frequency of 100 kHz.
The output jitter of udiff was measured using a frequency coun-
ter (Keysight 53220A) and input-referred to the equivalent
phase error. Fig. 13 shows a histogram of the measured phase
with an RMS noise of 0.5� around a mean value of �102�. The
12� phase offset (330 ns) is due to the designed delay chain in
the reference pixel (simulated ¼ 10.45�). Fig. 14 demonstrates
that the in-pixel averaging technique provides an SNR improve-
ment of þ10 dB per 10� integration time. This design is ther-
mal noise limited up to 100 cycles (1 ms), after which the
R-TIA’s 1/f noise dominates.

Fig. 11. Power distribution under worst-case (maximum fstim).

Fig. 12. Measurement setup for characterization.

Fig. 13. Measured noise of a single cycle of udiff.

Fig. 10. Annotated chip micrograph.
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The entire 19 � 16 array was analyzed to characterize the
noise of the GRO-TDC across all pixels. This was tested using
unprocessed electrodes, meaning the TIA input was weakly
grounded through parasitic capacitance. With the PD output
pulled high, this measurement captures only the GRO-TDC
noise. The noise of each pixel was averaged over 200 cycles,
and the resulting heatmap is presented in Fig. 15. The GRO-
TDC noise, averaged across a 19� 16 pixel array, is 0.1�rms.

The linearity was measured by applying two sinusoids with a
phase shift between the reference and signal pixel using an arbi-
trary function generator (Tektronix AFG3022C) at 100 kHz.
Fig. 16 shows the transfer function over the phase full-scale
range of 180� with an offset of 9.8� (�250 ns) matching the
designed delay chain in the reference pixel and an RMS linearity
error of 0.035%. The efficacy of the proposed edge-based phase
detector is compared with that of a level-sensitive phase detector
in Fig. 17 by comparing transfer functions at three test frequen-
cies (50, 100, and 500 kHz). Fig. 17(a) shows the presence of
dead zones in [27], degrading the linearity, which were elimi-
nated in this design [Fig. 17(b)].

B. Electrode Fabrication

Each sensor incorporates an exposed top aluminum layer
within the standard process (effectively a bond pad). However,

aluminum is not electrochemically compatible, thus requiring
a more stable metal. Gold (Au) was chosen as it is easy to
immobilize DNA through Au-thiol bonding. A film stack con-
sisting of a 15 nm chromium (Cr) adhesion layer followed by
600 nm of Au was sputtered (Denton Discovery 635) and selec-
tively removed using a liftoff process. Sputtering was used
rather than an electroless plating process (ENIG), making the
electrodes more durable and stable than the previous iteration
[27]. During initial testing, it was discovered that this approach
is susceptible to fluid incursion near the electrode edges, corrod-
ing the underlying aluminum metallization. We could have
etched the aluminum and deposited Au above the tungsten metal
5-6 vias, as in [40], but developed an alternative approach where
a SiO2 ring was deposited around each electrode, enhancing
containment and protection, as shown in Fig. 18. Using this
approach, the electrodes were stable in a phosphate-buffered
saline (PBS) solution for more than 24 hours without any visible
or electrical signs of corrosion.

Fig. 15. Heatmap of the GRO-TDC noise.

Fig. 16. Measured pixel (a) transfer function and (b) linearity.

Fig. 17. Comparison of the transfer functions of (a) level-sensitive [27] and
(b) edge-sensitive PDs.

Fig. 18. (a) Image of gold electrode array. (b) Cross-section drawing of post-
processed CMOS electrode.

Fig. 14. Measured SNR improvement with the in-pixel averaging by accumu-
lating multiple cycles.
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C. Flow Cell

We used chip-on-board packaging where the die is directly
wire-bonded to a printed circuit board (PCB). The PCB incorpo-
rates fiducials to position the die properly for the flow cell. The
wire bonds were partially encapsulated, leaving the electrodes
exposed. An open-well flow cell for electrochemical testing was
designed using SOLIDWORKS and 3D printed (FormLabs 3B),
as shown in Fig. 19. It has a 150 mL well above the electrode
array to hold the sample. An o-ring is sandwiched between the
chip and the flow cell to protect the wire-bonding encapsulant
from the solution [see Fig. 19(b)]. Knurled nuts and springs con-
trol the compression force and ensure adequate sealing. Holes on
the PCB are used to align the flow cell. The reference electrode is
attached from the top, allowing various materials to be used.

D. Biological Measurements

The functionality of the circuitry and post-processed electro-
des was confirmed through the measurement of phase changes
associated with varying ionic strength, Cbuf. Modifying Cbuf

induces changes in the electrode impedance where Rs has an
inverse relationship with the concentration. At low ionic concen-
trations, Cdl is approximately proportional to the square root of
the concentration due to the increase in the Debye length [41].
Thus, at 100 kHz, the phase is

/elec � 90� � tan�1xRsCdl /
ffiffiffiffiffiffiffiffiffi
Cbuf

p
: (8)

The experiment employed a 2-electrode configuration with
the on-chip electrode used as the working electrode and a silver
wire as the reference electrode [Fig. 20(a)]. Starting with an ini-
tial sample of 85 mL of 1� SSC, small volumes of 20� SSC
were serially added to increase the buffer strength from 3� to
5�. Fig. 20(b) shows the measured real-time change in phase.
The transient signals coincide with the fluid additions as the ions
diffuse and Cdl is perturbed before settling to the nominal val-
ues. These data closely agree with the theoretical results accord-
ing to (8), both offset-corrected.

Before running assays on the chips, experiments were conducted
to determine the optimal experimental parameters (i.e., the EIS fre-
quency and dc bias for the particular redox reporter concentration
and buffer system). Ideally, these measurements should be per-
formed on the same electrodes, but we did not have on-chip electro-
des available to measure with an external potentiostat, so we used
gold screen-printed electrodes (DropSens 220AT) as a proxy. Cyclic

voltammetry (�0.3 to 0.6 V, 10 mV step, and 50 mV/s scan rate)
measurements were collected from an unfunctionalized electrode in
5� SSC with 5 mM of ferri-/ferrocyanide ([Fe(CN)6

3-/4-]) using
an off-the-shelf potentiostat (PalmSens 4). It was found that
the optimal dc bias for EIS experiments was 250-mV to bias
the cell at the oxidation peak [see Fig. 21(a)]. Next, an EIS
measurement (10 mV amplitude, 10–100 kHz) using this dc
bias was performed on the cell. As shown in Fig. 21(b), the
maximum phase change occurred at 5 kHz. These parameters
were used for all subsequent measurements.

Fig. 19. (a) Rendering of flow cell and (b) photograph of assembled flow cell.

Fig. 20. Phase change due to increasing SSC buffer concentration on an indi-
vidual sensor (n¼ 1).

Fig. 21. Measured (a) voltammogram and (b) phase on a gold screen-printed
electrode in 5 mM ferri-/ferrocyanide and 5� SSC.
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Next, we functionalized the chip sensor electrodes with a
DNA aptamer. Briefly, the sensor surface was cleaned by wash-
ing with ultra-pure water and then isopropyl alcohol, followed
by UV-Ozone (UVOTECH Helios 500) treatment for 10 minutes
to remove any organic residues. 20 mL of 1 mM thiolated troponin
aptamer (50!30: Thiol-C6-TTT TTT CGT GCA GTA CGC
CAA CTT TTC TCA TGC GCT GCC CCT CTT) [42] reduced
with tris(2-carboxyethyl)phosphine (TCEP) was spotted on a sub-
set of the sensors and incubated overnight at 4�C. The chips were
subsequently incubated with 20 mL of 1 mM 6-mercapto-1-
hexanol (MCH) to block the remaining electrode surface for
30 minutes. After the surface modification, the chips were thor-
oughly washed with deionized water to remove unbound mole-
cules and stored at 4�C for up to one week.

We then measured DNA hybridization using the chip where
16 sensors were functionalized with the aptamer. The phase was

read continuously for the duration of the experiment (105 minutes).
Initially, 100 mL of 5 mM ferri-/ferrocyanide in 5� SSC buffer was
added to the flow cell, and the phase was recorded for 15 minutes to
observe the baseline. Next, 1 mL of 100 mM off-target DNA (AAT
AGT CCC ACA ATT GAC GT) was added to achieve a final off-
target concentration of 1 mMand measured for 30 minutes. Finally,
an additional 1 mL of 100 mM complementary DNA (AAA ATG
AGA AAA GTT G) was added, and measurements continued for
another 60 minutes. The phase is plotted as the difference from
the starting value (m ¼ 67.9�). As shown in Fig. 22(a), the base-
line signal is stable with minimal drift and no response to the off-
target DNA. After adding complementary DNA, a classic binding
curve was observed (m ¼ 16.8�). The sensor-to-sensor variation
(r ¼ 2.4�) is likely due to non-uniform probe attachment since
the sensors were hand-spotted. As a final confirmation that the
signal was due to specific binding, we added 10 mL of 8 M urea

TABLE I
PERFORMANCE SUMMARY AND COMPARISON TO THE STATE-OF-THE-ART

Parameter [15] [20] [21] [22] [24] [34] [43] [44] [45] This Work

Technology [nm] 130 350 500 130 350 180 180 180 250 180

Supply [V] 1.2 3.3 3 0.6 3.3 0.9 – 1.5 2.5 1.8

On-chip electrodes? Yes Yes No Yes No No No No No Yes

Num of sensors 64 100 – 12 – – – – – 320

Num of readout
channels 16 100 1 12 1 1 1 1 1 320

Area/channel [lm2] 60,000 10,000 60,000 4,000 70,000 400,000 35,000 300 48,000 19,600

Power [mW] 0.67 84.5 0.006 0.0146 0.32 28 0.395 0.016 <10 63

Power/channel
[lW] 42 845 6 0.05 320 28000 220 16 <10,000 196

On-chip ADC? In-Pixel No Yes In-Pixel In-Pixel In-Pixel In-Pixel No Yes In-Pixel

Frequency range
[Hz] 0.1 – 104 102 –5 � 107 0.1 – 104 1 – 5 � 103 10-4 – 105 100 – 106

5 � 10-4 –
5 � 104

– 103 – 2 � 106 5 3 103 – 106

Quadrature signal
source required? Yes Yes Yes Yes No No No No Yes No

Magnitude error
[%] – –

0.32% @
10 Hz

–
0.28% @
10 kHz

2.5% 0.19% – 1% –

Phase error [%] – –
2.7% @
1 kHz

–
0.12% @
10 Hz

2.2� 0.08%
0.1% for
Res, 0.4%
for Cap

1.3� 0.05�/0.035%
@ 100 kHz

Fig. 22. Measured real-time (a) DNA hybridization and (b) aptamer-antigen binding. Error bars represent61 r.
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to denature the DNA. The sensors functionalized with DNA sub-
sequently relaxed back to their initial phase over 30 minutes (data
not shown), confirming that the interaction was specific and due
to the DNA-DNA interaction.

We repeated a similar experiment, however, this time with car-
diac troponin I (cTnI) antigen (Abcam ab283299). The sensors
were prepared similarly. A baseline signal was recorded in 100 mL
of 5 mM ferri-/ferrocyanide and 1� PBS for 15 minutes. Next,
5.3 mL of 1 mM bovine serum albumin (BSA) was spiked into the
flow cell for a final concentration of 50 mM and measured for
30 minutes. Then, cTnI was added to achieve a final concentration
of 250 pM and measured for 60 minutes. Fig. 22(b) shows the
measured real-time plot where minimal non-specific binding
occurs during the BSA phase, and a specific response due to the
aptamer-antigen interaction (m¼ 5.3�) was observed.

While these experiments demonstrate the ability to perform
DNA and antigen assays on this chip, they are insufficient to assess
parameters such as the limit of detection, dynamic range, and repro-
ducibility. Furthermore, comparing this technique with classical
EIS (i.e., magnitude and phase) would be interesting, but we cannot
measure this with the current circuits and do not have on-chip elec-
trodes without the readout circuitry. Future work will focus on bet-
ter assessing the biological performance of this approach.

E. Comparison to the State-of-the-Art

Table I compares the performance of this work with that of
recently published EIS CMOS biosensors. This work achieves the
highest pixel density and one of the smallest pixel areas with an
in-pixel analog front-end and quantizer. Leveraging phase-only
polar modulation and mostly digital circuitry, it achieves a state-of-
the-art phase error of 0.035% (0.05�), which is >2� better than
current benchmarks, enabling highly sensitive bioassays.

VI. CONCLUDING REMARKS

This work reports a 16 � 20 electrochemical CMOS biosen-
sor array employing polar mode detection using a phase-only
EIS method to track binding events. Within each pixel (140 �
140 mm2), the phase change is measured using a load-
compensated TIA, edge-sensitive phase detector, and a first-
order noise-shaping time-to-digital converter, eliminating the
need for quadrature signal analysis. This predominantly digital
design offers 10 dB noise reduction for every 10� additional
data points through in-pixel averaging. It achieves 0.035%
RMS error using a duty-cycle insensitive phase detector and
one of the smallest areas per pixel with in-pixel quantization.
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