

An ECG Chopper Amplifier Achieving 0.92 NEF and 0.85 PEF with AC-coupled Inverter-Stacking for Noise Efficiency Enhancement

> Somok Mondal and Drew A. Hall University of California, San Diego

Outline

- Motivation and Introduction
- Noise Efficiency Enhancement by OTA Stacking
- ECG Amplifier Architecture
- Circuit Implementation
- Simulation Results
- Conclusion

Motivation

World of IoTs and m-Health

Miniaturized Wearable & Implantable Devices

- Automated, remote monitoring
- Early detection/diagnosis

Major Challenges:

- Continuous reliable monitoring via a small integrated unit
 - Ultra-low power sensing circuits with long battery life

ECG Acquisition Amplifier

Amplifies <u>weak</u>, <u>low-bandwidth</u> physiological signals

Noise Efficiency Factor (NEF) → noise-current trade-off

$$NEF = v_{\rm ni,RMS} \sqrt{\frac{2I_{\rm tot}}{V_{\rm T}4k_{\rm B}T\pi BW}}$$

Power Efficiency Factor (PEF) \rightarrow noise-power trade-off $PEF = NEF^2 V_{DD}$

 I_{tot} : amplifier current, $v_{ni,RMS}$: input referred noise, BW: bandwidth, V_T : thermal voltage, T: temperature, k_B : Boltzmann's constant

Noise Efficiency Limitation

For a differential amplifier if

- only input diff-pair noise
- devices in sub-threshold

 κ : gate-coupling coefficient typically ~ 0.7

Fundamental NEF Limit

$$NEF_o = \sqrt{\frac{2}{\kappa^2}} \cong 2.02$$

NEF Improvements: Prior Art

• Current Reuse [1]: $NEF = NEF_o / \sqrt{2}$

Inverter-based OTA
$$G_{\rm m} = g_{\rm mn} + g_{\rm mp}$$

 $PEF \cong PEF_o/4$

[1] - Chae TNSRE '09 [2] - Yaul ISSCC '16

Proposed Stacked OTA

AC-coupled inverter-based transconductor

Proposed Stacked OTA

G_m boosting:
$$G_{\rm m} = NG_{\rm mo}$$
^[3]
 $R_{\rm out} = R_{\rm o}/N$
 $A_{\rm v} = G_{\rm m}R_{\rm out} = G_{\rm mo}R_{\rm o}$

 $G_{\rm m}$, $R_{\rm out}$: compound transconductance, output impedance $G_{\rm m0}$, $R_{\rm o}$: single inverter transconductance, output impedance $A_{\rm v}$: OTA Gain

[3] - Iguchi ISSCC'16 (crystal oscillator start-up)

Proposed Stacked OTA

 $G_{\rm m}$ boosting: $G_{\rm m} = NG_{\rm mo}$

Input-referred noise:

$$\overline{v_{\text{ni,thermal}}^2} = \frac{4k_{\text{B}}T\gamma}{NG_{\text{mo}}}$$
$$\overline{v_{\text{ni,flicker}}^2} = \frac{1}{4Nf} \left[\frac{K_{\text{n}}}{C_{\text{ox}}(WL)_{\text{n}}} + \frac{K_{\text{p}}}{C_{\text{ox}}(WL)_{\text{p}}} \right]$$

 γ , C_{ox} , K_{n} , K_{p} : device parameters $(WL)_{\text{n,p}}$: device sizes $\overline{v_{\text{ni}}^2}$: input referred noise PSD

Noise efficiency enhancement:

- $\sqrt{2N}$ times improvement in *NEF*
- **2***N* times improvement in *PEF* (same V_{DD})

For a differential implementation:

2-stack NEF limit : 1.01 3-stack NEF limit : 0.82

Trade-offs

Inverter-Stacking Trade-offs:

 $V_{\rm DD,min} = NV_{\rm INV} + V_{\rm tail}$ $NEF \propto 1/\sqrt{N}$ $PEF_{\rm min} \propto V_{INV} + V_{\rm tail}/N$

 $V_{\rm INV}$, $V_{\rm tail}$: voltage headroom for single inverter, tail source

Normalized minimum PEF:

- 2-stack: 0.82
- 3-stack: 0.75
- 4-stack: 0.72

3-stack with 1 V supply is optimal

Key Challenges:

- AC-coupling of low bandwidth ECG (~250 Hz) would require very large capacitors
- Signal swing with OTA stacking is limited

Key Challenges:

- AC-coupling of low bandwidth ECG (~250 Hz) would require very large capacitors
- Upmodulate to a higher (chopping) frequency \rightarrow simpler ac-coupling
- Signal swing with OTA stacking is limited
- First stage with low signal swing

- Low in-band flicker noise
- High CMRR (for 60Hz noise)
- Electrode polarization offset
- High input impedance
 - 2nd stage DC bias

- Low in-band flicker noise
- High CMRR (for 60Hz noise)
- Electrode polarization offset
- High input impedance
 - 2nd stage DC bias

- Low in-band flicker noise
- High CMRR (for 60Hz noise)
- Electrode polarization offset
- High input impedance
- 2nd stage DC bias

- Low In-band flicker noise
- High CMRR (for 60Hz noise)
- Electrode polarization offset
- High input impedance
 - 2nd stage DC bias

Circuit Implementation

Fully Differential Stacked OTA:

- C_{ci}, C_{co}, C_{Dn,p}→ low impedance (ac-shorts) at the chopping frequency (5 kHz)
- $C_{\text{Dn,p}}$ are 25 pF MOS capacitors to account for $1/g_{\text{m}}$ source impedance ~ 6M Ω . (40×40 μ m²)
- Differential operation aids the decoupling with source nodes acting as virtual shorts.

Circuit Implementation

Fully Differential Stacked OTA:

Mid-band gain:

$$A_{\rm M1} = -\left(\frac{C_{\rm Ci}}{C_{\rm ci} + C_{\rm in,tot}}\right) G_{\rm mo} R_{\rm o} \left(\frac{NC_{\rm co}}{NC_{\rm co} + C_{\rm L1}}\right)$$

Large C_{L1} required for Miller compensation \rightarrow Use load compensation used instead

 $C_{Ci,o}$ are 4 pF MOM capacitors

Circuit Implementation

Simulation Results

Stacked OTA simulations

Open-loop gain

Input-referred noise

Closed-loop amplifier simulations

Amplifier differential-mode gain (using PAC analysis)

Amplifier loop-gain (using PSTB analysis)

Phase Margin ~ 90°

Simulation Results

100 monte-carlo runs (over process and mismatch variations)

Amplifier transient response and spectra

SFDR = 54 dB THD = 0.3%

Simulation Results

Amplifier noise performance with inverter-stacking

148 nV/ \sqrt{Hz} with only 14 nA!

Summary and Comparison

	This work [#]			Harpe ISSCC'15	Jeon ISSCC'14	[#] Song ISCAS'14	Yaul ISSCC'16	Han ISSCC'13	Chen VLSI'14
Application	ECG			ECG	ECG	Fetal ECG	EEG	EEG	-
Technology Node	65 nm			65 nm	65 nm	180 nm	180 nm	180 nm	180 nm
Supply (V)	1			0.6	0.6	1	0.2 and 0.8	0.45	1
Power (nW)	17.7			1	16.8	2,500	790	730	266
Current (nA)	17.7			1.67	28	2,500	987	1622	266
Gain (dB)	35			32	51 – 96	50	58	52	60
BW (Hz)	250			370	250	120	670	10,000	500
Input-referred	1.402	1.500	a 2 0 1	1 400			26	•	
Noise (nV/√Hz)	1483	1722	2381	1,400	253	21.8	36	29	54.9
CMRR / PSRR (dB)	>75 / >60			60 / 63	80 / 67	>60 / >80	85 / 74	73 / 80	89 / 92
NEF	0.923	1.082	1.511	2.1	2.64	1.17	2.1	1.57	1.38
PEF	0.853	1.172	2.281	2.64	4.1	1.37	1.6	1.12	1.9

#Simulated Designs 11-stack 22-stack 33-stack

Best reported NEF of 0.92 and PEF of 0.85!

Conclusion

- AC-coupled Inverter-stacking for G_m-boosting leading to noise efficiency enhancement
- Best-reported NEF/PEF from simulations
- Useful technique particularly for IoT mHealth applications

Center *for* Wireless COMMUNICATIONS

Backup Slides