

A Nanogap Transducer Array on 32 nm CMOS for Electrochemical DNA Sequencing

Drew A. Hall, Jonathan S. Daniels, Bibiche Geuskens, Noureddine Tayebi, Grace M. Credo, David J. Liu, Handong Li, Kai Wu, Xing Su, Madoo Varma, <u>Oguz H. Elibol</u>

Outline

- Background
- System Overview
- Circuit Architecture
- Transducer Integration
- Results
- Scalability
- Summary

Low Cost Sequencing Drives Applications

*http://www.forbes.com/sites/luketimmerman/2015/04/29/qa-with-jayflatley-ceo-of-illumina-the-genomics-company-pursuing-a-20b-market/

Targeted disease management

- Prevention, screening
- Clinical diagnostics
- Treatment, monitoring

Non-clinical industrial monitoring

- Environment/Ecology (metagenomics)
- Bio-defense; epidemiology
- Agriculture/food, beverages

Acceleration of drug development

- Disease association
- Compound screening
- Drug efficacy

DNA: The Blue Print of Life

DNA Sequencing Process Flow

Image credits:

http://biochem.jacobs-university.de/BDPC/BISMA/manual_unique.php, http://www.454.com/products-solutions/how-it-works/index.asp, http://www.odec.ca/projects/2006/bach6k2/background.htm

16.1: A Nanogap Transducer Array on 32 nm CMOS for Electrochemical DNA Sequencing

System Overview

DNA Sequencing Flow - Pixel

1- A colony derived from a unique DNA strand is immobilized on each sensor

2- Each modified base is introduced sequentially through the solution (~min)

3- The electrochemical tag is released upon incorporation of the base and detected (after cleaving phosphate) (~sec)

Presence of the tag is detected per pixel per base

Transduction Mechanism

Transduction Mechanism

Discharge Measurement

Voltage readout of the bottom electrode instead of current

Pixel Architecture

 V_{ref} V_{sol} R_{int} C_{dl} V_{reset} R_{int} C_{dl} V_{reset} R_{int} V_{reset} R_{int} V_{reset} V_{reset}

Model with Ideal Elements

Per-column analog readout, shared between many rows

3 transistors per pixel: reset, follower, and row select

Chip Architecture

Column parallel readout, cycle through rows

VCO Based ADC

DNA Sequencing Flow - Pixel

1- A colony derived from a unique DNA strand is immobilized on each sensor

2- Each modified base is introduced sequentially through the solution (~min)

3- The electrochemical tag is released upon incorporation of the base and detected (after cleaving phosphate) (~sec)

Presence of the tag is detected per pixel per base

Post processing on standard CMOS wafer

© 2016 IEEE International Solid-State Circuits Conference 16.1: A Nanogap Transducer Array on 32 nm CMOS for Electrochemical DNA Sequencing

16.1: A Nanogap Transducer Array on 32 nm CMOS for Electrochemical DNA Sequencing

4 µm

Measurement System

Bare chip electrical and fluidic interface

Custom board with FPGA connection

Data Collection

Measurement Results

© 2016 IEEE International Solid-State Circuits Conference

16.1: A Nanogap Transducer Array on 32 nm CMOS for Electrochemical DNA Sequencing

Transducer Scaling

1M pixel array with 1.5 um pitch devices – Transducer Only

Scalability Comparison

Signal
$$\propto \frac{1}{\text{Capacitance}} \sim \frac{1}{d^2}$$

Signal
$$\propto \frac{\text{Area}}{\text{Volume}} \sim \frac{1}{d}$$

- Relaxed requirements on frame rate
- Lateral dimension independent SNR

	ISFET	Nanogap
Frame Rate	>10 fps*	~1 fps
Noise Scaling	1/d ²	1/d ²
Signal Scaling	1/d	1/d ²
SNR	d	1

* Needed due to fast transient signal

Summary

System		
Technology	32 nm CMOS	
Die size	5 mm x 5 mm	
Number of pixels	8,192	
Number of sensors	224	
Power consumption	27.9 mW	
Supply voltage	1.05 V / 1.8 V	
Pixel		
Area	1 µm²	
Leakage	< 10 pA	
Sensor		
Area	20 µm ²	
Unit capacitance	1 pF/µm²	
Electrode spacing	60 nm	
Signal/pAP molecule	50 fA	
ADC		
FSR	700 mV	
Conversion time	50 ns	
Resolution	8-bit	

- Scalable approach for electronic DNA sequencing on 32 nm process node
- Enabled by co-optimized circuits and transducers
- Demonstration of detection
 of nucleotide incorporation
- Sensitive and dense biosensing platforms can be realized in advanced process nodes

Acknowledgements

Group Members:

- Stephane Smith
- William Van Trump
- Tolga Acikalin
- Pradyumna Singh
- Ryan Field
- Hao Luo
- Mark Oldham
- Eric Nordman

Fabrication:

- Steven Cooperman
- Michael Lewis
- Elizabeth Lee
- Intel Fab Staff
- SNF Facility Staff

Characterization:

Intel NML

Device Physics:

 Serge Lemay & Group