

A Sub-pA Current Sensing Front-End for Transient Induced Molecular Spectroscopy

<u>Da Ying</u>, Ping-Wei Chen, Chi-Yang Tseng, Yu-Hwa Lo, and Drew A. Hall

University of California, San Diego, CA, USA

New Drug Discovery

- High-cost (>\$2.6B/drug¹) and failure rate from mid- to late-stage
- Many diseases are highly linked to protein-ligand abnormality

Drug Discovery and Development: A LONG, RISKY ROAD

Need a solution for accurate *in-vitro* study of protein-ligand interactions

[1] Pharmaceutical Research and Manufacturers of America

Existing Methods for Protein-Ligand Detection

Surface Plasmon Resonance

- ✓ Binding kinetics
- × Immobilization of ligand

FRET

- ✓ Solution phase
- Labelling of ligand

Labeling and immobilization significantly limit degree of freedom for binding

[1] J. Homola, Analytical and Bioanalytical Chemistry, 2003; [2] C. Fan, TRENDS in Biotechnology, 2005

Transient Induced Molecular Spectroscopy (TIMES)

✓ Label- and immobilization-free *in-vitro* protein-ligand detection
 ✓ Closer to physiological conditions and better signal integrity

Requires a sensitive AFE for charge sensing

T. Zhang, Y. Lo, Scientific Reports, 2016

µTIMES Specification

Parameter	Application	Circuit		
Sensor size	8 channels	300µm×300µm M6		
Resolution	0.1 µM sensitivity	100 fA		
Cross-scale DR	0.1 µM - 10 mM range	100 fA - 1 µA		
Bandwidth	5 cm/s flow rate	10 Hz		

- Active area < 0.2 mm²/ch.
- Partition across 4 references with 80dB SNDR each
- WE/RE \rightarrow pseudo-differential input

T. Zhang, Y. Lo, ACS Central Science, 2016

Existing Sub-pA Current AFEs

- **×** Sensitive to aliasing
- \star Input sampling \rightarrow noise folding
- * Charge injection to sensor

[C. Hsu, ISSCC'18]

- × Heavy digital backend
- **×** Large area, limited # of channels

Aim to achieve 100fA sensitivity with small area/power

Proposed µTIMES AFE Architecture

 μ TIMES \rightarrow 1st-order current-mode $\Delta\Sigma$ + digital IIR (linear predictor)

1) 1-bit quantizer + digital IIR achieves quasi multi-bit quantization

Proposed µTIMES AFE Architecture

Integrator only needs to process half of original pulse amplitude

2) Tri-level PWM avoids intensive hardware and relaxes filter linearity

Proposed µTIMES AFE Architecture

Lower f_s relaxes speed requirement and improves anti-aliasing

(3) Multi-bit feedback effectively reduces f_s

Issues with Single-bit Quantization

- Limited SQNR for given OSR
- Deterministic quantization noise
- Arbitrary quantizer gain

 $\frac{OSR_{\rm nbit}}{OSR_{\rm 1bit}} \propto 2^{-\frac{2n}{2L+1}}$

Limited SQNR \rightarrow Large OSR \rightarrow Power hungry & poor anti-aliasing

Issues with Single-bit Quantization

- Limited SQNR for given OSR
- Deterministic quantization noise
- Arbitrary quantizer gain

<u>What we will find later:</u> More transitions and quantization levels \rightarrow less tonal effect

Issues with Single-bit Quantization

Arbitrary quantizer gain \rightarrow deviate from linear model

Motivation: Linear Prediction in $\Delta\Sigma$

 \rightarrow Multi-bit achieved with only a 4-bit adder, scaler, and two FFs

Turning 1-bit Into Multi-bit

First-order observations:

- D_{out} closely tracks input signal
- More transitions \rightarrow less tonal
- Quantization step $\in \{\Delta, 3\Delta\}$
- $f_{sig,max}$ and PSD?

Theoretical PSD and $f_{sig,max}$

Conservative SQNR analysis:

$$\rightarrow e_q \in \left[-\frac{3\Delta}{2}, +\frac{3\Delta}{2}\right]$$

$$\rightarrow \sigma_q^2 = \frac{1}{3\Delta} \int_{-\frac{3\Delta}{2}}^{\frac{3\Delta}{2}} u^2 du = \frac{9\Delta^2}{12}$$

~9.5dB worse SQNR than ideal 4b Q

 $f_{\text{sig,max}} \text{ requirement:}$ $\rightarrow \frac{\partial A \sin(2\pi f_{\text{sig}}t + \phi)}{\partial t} \leq \frac{3\Delta}{T_{\text{s}}}$ $\rightarrow f_{\text{sig}} \leq \frac{3f_{\text{s}}}{2\pi \cdot 2^{n-1}} \stackrel{n=4}{\longrightarrow} \frac{3f_{\text{s}}}{16\pi}$

IIR- $\Delta\Sigma$ requires OSR > 8

STF & NTF

$$NTF(z) = (2 - z^{-1})(1 - z^{-1})$$

$$\Rightarrow STF(f) = \frac{1}{j2\pi f}(2 - e^{-j2\pi f})(1 - e^{-j2\pi f})$$

- 1st-order shaping NTF
- ~9dB larger out-of-band gain

Unity in-band STF & inherent anti-aliasing

IIR Quantizer Gain

- k smallest σ_e^2 between quantizer input y and output v- $k = \langle v, y \rangle / \langle y, y \rangle$ ^[1]
- Peak SNDR @ 0.8FS input level → define non-overloading range [0, 0.8FS]

k shows IIR quantizer can be statistically approximated as a multi-bit quantizer

[1] S. Pavan, R. Schreier, G. Temes, 'Understanding delta-sigma data converters', John Wiley & Sons, 2017

Tri-Level PWM DAC

- PWM DAC
 - Entirely digital coded \rightarrow less hardware
 - CT loop filter \rightarrow pulse shape independent
- Current-steering DAC
 - nA ~ μ A reference from current-splitting
 - No loading \rightarrow larger loop gain, linearity \uparrow
- Two-level PWM \rightarrow Tri-level PWM
 - Lose inherent linearity
 - Even-order distortion eliminated ^[1]
 - RZ DAC \rightarrow ISI immunity
 - Half pulse \rightarrow noise, jitter, OTA linearity 1

[1] F. Colodro, A. Torralba, TCAS-I, 2009

Tri-Level PWM DAC

$$\frac{\text{Current steering}}{S_{i,CS}(f) = 4kT\gamma} \frac{\frac{2I_{DAC}}{V_{DD}/2}}{V_{DD}/2} \qquad S_{i,R}(f) = 4kT\frac{I_{DAC}}{V_{DD}/2}$$

- Current-steering DAC with shunt path
 - Bypass most noise for small input
 - Low-pass filtered bias noise
 - Linearity maintained by careful sizing
- Lower jitter sensitivity

$$-SNR_{\text{jitter}} \propto \frac{1}{\sigma_{\text{DAC}}^2 \sigma_{\text{j}}^2}$$

- Half pulse amplitude
$$\rightarrow \sigma_{\rm DAC}^2 \Downarrow 4x$$

PWM ADC \rightarrow Light weight, multi-bit

Current-Splitting DAC

C. Enz, E. Vittoz, ISCAS, 1996

Continuous-Time CMFB

Chip Micrograph

Measurement Results

Capacitive loading \rightarrow noise $\widehat{\Upsilon}$

123fA sensitivity at 1nA reference

Measurement Results

SNDR vs. input amplitude

78.2dB fixed-scale dynamic range

Measurement Results

DC input sweep

139dB cross-scale dynamic range

TIMES In-vitro Measurement Setup

ENIG sensors

Symposia on VLSI Technology and Circuits

Slide 25

In-vitro Protein-Ligand Measurement

Characteristic shape due to unique dipole moment and charge locality

Performance Summary

	Stanaćević TBCAS'07	Li TBCAS'16	Sim TBCAS'17	Hsu ISSCC'18	Nazari TBCAS'13	This Work
AFE Architecture	Inc. ΔΣ	Inc. ΔΣ	ΔΣ	Hourglass ΔΣ	CC + SS ADC	IIR-ΔΣ
Process [µm]	0.5	0.5	0.35	0.18	0.35	0.18
Max Input [µA]	1	16	2.8	10	0.35	1.1
Resolution [fA] @ BW [Hz]	100 @ 0.1	100 @ 1	100,000 @ 10	100 @ 1.8	24,000 @ 100	123 @ 10
Conversion Time @ Min. Input [ms]	8,388	1,000	4	400	10	100
Input-referred Noise [fA/√Hz]	-	-	6,960	58.9	1,850	30.3
Fixed-/cross- scale DR [dB]	40* / 140	54.0* / 164	77.5	160	60.7 / 95	78.2 / 139
On-chip Sensors?	NO	NO	NO	NO	YES	YES
Num. of Channels	16	50	1	1	192	8
Area/ch. [mm ²]	0.25*	0.157	0.5	0.2†	0.04	0.11
Power/ch. [µW]	3.4‡	241	16.8	295	188	50.3

* estimated from figures; [†] not including synthesized digital area and DEM; [‡] off-chip bias

Performance Summary

	Stanaćević TBCAS'07	Li TBCAS'16	Sim TBCAS'17	Hsu ISSCC'18	Nazari TBCAS'13	This Work
AFE Architecture	Inc. ΔΣ	Inc. ΔΣ	ΔΣ	Hourglass ΔΣ	CC + SS ADC	IIR-ΔΣ
Process [µm]	0.5	0.5	0.35	0.18	0.35	0.18
Max Input [µA]	1	16	2.8	10	0.35	1.1
Resolution [fA] @ BW [Hz]	100 @ 0.1	100 @ 1	100,000 @ 10	100 @ 1.8	24,000 @ 100	123 @ 10
Conversion Time @ Min. Input [ms]	8,388	1,000	4	400	10	100
Input-referred Noise [fA/√Hz]	-	-	6,960	58.9	1,850	30.3
Fixed-/cross- scale DR [dB]	40* / 140	54.0* / 164	77.5	160	60.7 / 95	78.2 / 139
On-chip Sensors?	NO	NO	NO	NO	YES	YES
Num. of Channels	16	50	1	1	192	8
Area/ch. [mm ²]	0.25*	0.157	0.5	0.2†	0.04	0.11
Power/ch. [µW]	3.4‡	241	16.8	295	188	50.3

* estimated from figures; [†] not including synthesized digital area and DEM; [‡] off-chip bias

Performance Summary

	Stanaćević TBCAS'07	Li TBCAS'16	Sim TBCAS'17	Hsu ISSCC'18	Nazari TBCAS'13	This Work
AFE Architecture	Inc. ΔΣ	Inc. ΔΣ	ΔΣ	Hourglass ΔΣ	CC + SS ADC	IIR-ΔΣ
Process [µm]	0.5	0.5	0.35	0.18	0.35	0.18
Max Input [µA]	1	16	2.8	10	0.35	1.1
Resolution [fA] @ BW [Hz]	100 @ 0.1	100 @ 1	100,000 @ 10	100 @ 1.8	24,000 @ 100	123 @ 10
Conversion Time @ Min. Input [ms]	8,388	1,000	4	400	10	100
Input-referred Noise [fA/√Hz]	-	-	6,960	58.9	1,850	30.3
Fixed-/cross- scale DR [dB]	40* / 140	54.0* / 164	77.5	160	60.7 / 95	78.2 / 139
On-chip Sensors?	NO	NO	NO	NO	YES	YES
Num. of Channels	16	50	1	1	192	8
Area/ch. [mm ²]	0.25*	0.157	0.5	0.2†	0.04	0.11
Power/ch. [µW]	3.4‡	241	16.8	295	188	50.3

* estimated from figures; [†] not including synthesized digital area and DEM; [‡] off-chip bias

Conclusion

Motivation:

- A compact, energy-efficient, high-sensitivity AFE for TIMES biosensing <u>Techniques:</u>
 - Linear prediction in 1st-order CT- $\Delta\Sigma$ achieved by digital IIR filter
 - Relaxed hardware complexity with tri-level PWM DAC

Results:

- Low-noise (30.3fA//Hz)
- High sensitivity (123fA)
- Large dynamic range (78.2dB/139dB)
- Small area (0.11mm²) and low power (50.3 μ W) per channel

Acknowledgement

• This work was supported in part by the National Science Foundation under Grant ECCS-1610516.

Thank you for your attention!