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New Drug Discovery

• High-cost (>$2.6B/drug1) and failure rate from mid- to late-stage
• Many diseases are highly linked to protein-ligand abnormality
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Need a solution for accurate in-vitro study of protein-ligand interactions 
[1] Pharmaceutical Research and Manufacturers of America

[1]
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Existing Methods for Protein-Ligand Detection

ü Binding kinetics
û Immobilization of ligand
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[1] J. Homola, Analytical and Bioanalytical Chemistry, 2003; [2] C. Fan, TRENDS in Biotechnology, 2005

[1]

Surface Plasmon Resonance

Labeling and immobilization significantly limit degree of freedom for binding

[2]

ü Solution phase
û Labelling of ligand

FRET
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Transient Induced Molecular Spectroscopy (TIMES)

ü Label- and immobilization-free in-vitro protein-ligand detection
ü Closer to physiological conditions and better signal integrity
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Requires a sensitive AFE for charge sensing
T. Zhang, Y. Lo, Scientific Reports, 2016

𝐼 =
𝜕𝑄
𝜕𝑡
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µTIMES Specification

• Active area < 0.2 mm2/ch.
• Partition across 4 references with 80dB SNDR each
• WE/RE à pseudo-differential input
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Parameter Application Circuit

Sensor size 8 channels 300µm×300µm M6

Resolution 0.1 µM sensitivity 100 fA

Cross-scale DR 0.1 µM – 10 mM range 100 fA – 1 µA

Bandwidth 5 cm/s flow rate 10 Hz

T. Zhang, Y. Lo, ACS Central Science, 2016
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Existing Sub-pA Current AFEs
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û Sensitive to aliasing
û Input sampling à noise folding
û Charge injection to sensor

[H. Li, TBioCAS’16]

û Heavy digital backend
û Large area, limited # of channels

[C. Hsu, ISSCC’18]

Aim to achieve 100fA sensitivity with small area/power
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µTIMES à 1st-order current-mode ΔΣ + digital IIR (linear predictor)

Proposed µTIMES AFE Architecture

Slide 6

① 1-bit quantizer + digital IIR achieves quasi multi-bit quantization 
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Integrator only needs to process half of original pulse amplitude 

Proposed µTIMES AFE Architecture
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② Tri-level PWM avoids intensive hardware and relaxes filter linearity
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Proposed µTIMES AFE Architecture
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③ Multi-bit feedback effectively reduces 𝑓'

Lower 𝑓( relaxes speed requirement and improves anti-aliasing
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Issues with Single-bit Quantization
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• Limited SQNR for given OSR
• Deterministic quantization noise
• Arbitrary quantizer gain

Limited SQNR à Large OSR à Power hungry & poor anti-aliasing

𝑂𝑆𝑅,-./
𝑂𝑆𝑅0-./

∝ 23
45
4670

𝑛 = Quantizer bits
𝐿 = order
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Issues with Single-bit Quantization
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• Limited SQNR for given OSR
• Deterministic quantization noise
• Arbitrary quantizer gain

Deterministic quantization noise à tonal à SNRò

What we will find later:
More transitions and quantization 
levels à less tonal effect



Symposia on VLSI Technology and Circuits

Issues with Single-bit Quantization
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• Limited SQNR for given OSR
• Deterministic quantization noise
• Arbitrary quantizer gain

Arbitrary quantizer gain à deviate from linear model
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Motivation: Linear Prediction in ΔΣ
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𝑥 n + 1 = 𝑥 n +
𝜕𝑥
𝜕𝑡
> ∆𝑇 = 𝑥 n + 𝑥 n − 𝑥[n − 1]

𝑫𝐨𝐮𝐭 n = 𝐷IJ/ n − 1 + 2×𝑄IJ/ n − 𝑄IJ/[n − 1]

à Multi-bit achieved with only a 4-bit adder, scaler, and two FFs

IIR filter à
LMNO [P]
QMNO[P]

= 43PRS

03PRS
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Turning 1-bit Into Multi-bit
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First-order observations:
• Dout closely tracks input signal
• More transitions à less tonal
• Quantization step ∈ {∆, 3∆}
• 𝑓(.Y,Z[\ and PSD?
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Theoretical PSD and 𝒇(.Y,Z[\
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Conservative SQNR analysis:

à 𝑒_ ∈ [−
`∆
4
, + `∆

4
]

à 𝜎_4 =
0
`∆ ∫3c∆d

c∆
d 𝑢4𝑑𝑢 = g∆d

04

𝑓(.Y,Z[\ requirement:

à
hi (.,(4klmnop7q)

hp ≤ `∆
tm

à 𝑓(.Y ≤
`lm

4k>4uRS
5vw `lm

0xk

~9.5dB worse SQNR than ideal 4b Q

IIR-ΔΣ requires OSR > 8
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STF & NTF
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𝑁𝑇𝐹(𝑧) = (2 − 𝑧30)(1 − 𝑧30)
à 𝑆𝑇𝐹 𝑓 = 0

|4kl
(2 − 𝑒3|4kl)(1 − 𝑒3|4kl)

• 1st-order shaping NTF
• ~9dB larger out-of-band gain

Unity in-band STF & inherent anti-aliasing
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IIR Quantizer Gain
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• 𝑘 - smallest 𝜎~4 between quantizer input 𝑦 and output 𝑣
– 𝑘 = 𝑣, 𝑦 / 𝑦, 𝑦 [1]

• Peak SNDR @ 0.8FS input level à define non-overloading range [0, 0.8FS]

𝑁𝑇𝐹� 𝑧 =
2 − 𝑧30
1 − 𝑧30

1 + 𝑘 > 𝐿 𝑧

𝑁𝑇𝐹�(𝑧): NTF (𝑘 ≠ 1)
𝐿 𝑧 : loop gain (𝑘 = 1)

𝑘 shows IIR quantizer can be statistically approximated as a multi-bit quantizer
[1] S. Pavan, R. Schreier, G. Temes, ‘Understanding delta-sigma data converters’, John Wiley & Sons, 2017
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Tri-Level PWM DAC
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• PWM DAC
– Entirely digital coded à less hardware
– CT loop filter à pulse shape independent 

• Current-steering DAC
– nA ~ µA reference from current-splitting
– No loading à larger loop gain, linearity ñ

• Two-level PWM à Tri-level PWM
– Lose inherent linearity
– Even-order distortion eliminated [1]

– RZ DAC à ISI immunity
– Half pulse à noise, jitter, OTA linearity ñ

[1] F. Colodro, A. Torralba, TCAS-I, 2009
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Tri-Level PWM DAC
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• Current-steering DAC with shunt path
– Bypass most noise for small input
– Low-pass filtered bias noise
– Linearity maintained by careful sizing

• Lower jitter sensitivity

– 𝑆𝑁𝑅�.//�� ∝
0

����
d ��

d

– Half pulse amplitude à 𝜎���4 ò 4x

Current steering

𝑆.,�� 𝑓 = 4𝑘𝑇𝛾
2𝐼���
𝑉��/2

Resistive

𝑆.,� 𝑓 = 4𝑘𝑇
𝐼���
𝑉��/2

PWM ADC à Light weight, multi-bit
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Current-Splitting DAC
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C. Enz, E. Vittoz, ISCAS, 1996
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Continuous-Time CMFB
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L. Luh, J. Draper, TCAS-II, 2000
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Chip Micrograph
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DAC
16%

Integrator
55%

Bias
22%

Total power: 50.3µW/ch
* Comparator and digital logic consumes 
negligible power

28µW

11µW 8µW3.
5µ

W

CMFB
7%
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Measurement Results
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Input-referred current noise PSD Peak SNDR

Capacitive loading à noise ñ 123fA sensitivity at 1nA reference
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Measurement Results
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SNDR vs. input amplitude

78.2dB fixed-scale dynamic range
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Measurement Results
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DC input sweep

139dB cross-scale dynamic range
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TIMES In-vitro Measurement Setup
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To inlets

FPGA power

FPGA USB

Power supply

µTIMES & microfluidic

PDMS cross-section

ENIG sensors

3 m
m
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In-vitro Protein-Ligand Measurement
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Characteristic shape due to unique dipole moment and charge locality
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Performance Summary
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 Stanaćević 
TBCAS’07 

Li 
TBCAS’16 

Sim 
TBCAS’17  

Hsu 
ISSCC’18 

Nazari 
TBCAS’13 

This 
Work 

AFE Architecture Inc. ΔΣ Inc. ΔΣ ΔΣ Hourglass 
ΔΣ 

CC + 
SS ADC IIR-ΔΣ 

Process [µm] 0.5 0.5 0.35 0.18 0.35 0.18 
Max Input [µA] 1 16 2.8 10 0.35 1.1 
Resolution [fA] 

@ BW [Hz] 
100 

@ 0.1 
100 
@ 1 

100,000 
@ 10 

100 
@ 1.8 

24,000 
@ 100 

123 
@ 10 

Conversion Time 
@ Min. Input [ms] 8,388 1,000 4 400 10 100 

Input-referred 
Noise [fA/√Hz] - - 6,960  58.9 1,850  30.3 

Fixed-/cross- 
scale DR [dB] 

40* / 
140 

54.0* / 
164 77.5 160 60.7 / 

95 
78.2 / 
139 

On-chip Sensors? NO NO NO NO YES YES 
Num. of Channels 16 50 1 1 192 8 

Area/ch. [mm2] 0.25* 0.157 0.5 0.2† 0.04 0.11 
Power/ch. [µW] 3.4‡ 241 16.8 295 188 50.3 

 
* estimated from figures; † not including synthesized digital area and DEM; ‡ off-chip bias
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Performance Summary
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Performance Summary
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Conclusion
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Motivation:
• A compact, energy-efficient, high-sensitivity AFE for TIMES biosensing

Techniques:
• Linear prediction in 1st-order CT-ΔΣ achieved by digital IIR filter
• Relaxed hardware complexity with tri-level PWM DAC

Results:
• Low-noise (30.3fA/√Hz)
• High sensitivity (123fA)
• Large dynamic range (78.2dB/139dB)
• Small area (0.11mm2) and low power (50.3µW) per channel
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