

Session 11 – CMOS Biochips and Bioelectronics

A Sub-1 µW Multiparameter Injectable BioMote for Continuous Alcohol Monitoring

Haowei Jiang, Xiahan Zhou, Saurabh Kulkarni, Michael Uranian, Rajesh Seenivasan, and Drew Hall

University of California, San Diego La Jolla, CA, USA *CICC 2018 San Diego, CA*

Motivation: Alcohol Sensing for Treatment

Alcohol abuse prevention

- Short term
- Limited supervision
- Relapse

Alcohol breath analyzers

- Short term
- User initiation
- Inaccurate (>0.1% BAC)

Laboratory blood test

- Short term
- Inaccessible
- Takes hours of time

Needs: accurate, long term, continuous alcohol monitoring

Motivation: ISF-Based Sensor

Benefits:

- High correlation with actual blood alcohol content (BAC)
- Located right below skin surface
 → allows near-field communication
- Quasi-stationary → sensor doesn't flow around

Need to build ISF-based (injectable) sensor & readout circuit

System Overview

Reader ้เอะอำ Chip

Low E_{total} is essential to extend the wearable device work time w/o recharging

Typically < 0.1% for near-field coupling, determined by size and distance

 $E_{\text{total}} = (P_{\text{reader}} + P_{\text{chip}}/Eff_{\text{link}}) \times T_{\text{test}}$

Determined by circuits

Determined by both circuits & sensing methodology

Design Requirements:

- Low power
- Fast measurement
- Tiny size: fully integrated sensors, antenna; battery-less
- High selectivity: cancel biological interference

Prior-Art

Chip architecture

Problems:

- Power hungry low-jitter clock and A/D converter
- RX is required for controlling sensing, digitizing and transmitting data

Proposed Work

Chip architecture

Benefits:

- Transfer clock-shaped analog data through TX → no need for on-chip clocking and digitizing
- Measurement is cycled by state-machine \rightarrow no RF downlink

Wearable

Implementation

Highlights:

- A low-power potentiostat w/ current-control loop & current starved amplifier consumes < 0.5 μW
- Self-oscillating I-F removes the need for clocking & digitizing

First reported sub-1 µW fully integrated, injectable biosensor

Alcohol Assay Sensing Method

Solution: Multi-electrode test cancels background signal and pH

Alcohol Assay Sensing Method

Electrode Layout

Low noise circuit (<3 nA) is required due to micro-electrodes

Potentiostat

Benefits of Voltage Control Loops:

- Set WE potential to 3/4·V_{DD} and measure I_{DUT} separately.
- Reduce kickback from I-F converter using current mirror.

Potentiostat

High current at start-up

Benefits of CCL:

- Set RE potential to $V_{DD}/4$.
- Limit current < 80 nA → reduce power consumption during start-up.
- Set dynamic range (~26 dB) based on ethanol physiological level (0.01–0.2% BAC).

pH Sensing Method

pH channel digitally corrects the measured ethanol concentration.

pH Amplifier

Benefit:

- Current starving reduces baseline current and improves power efficiency by 5X *Potential issues:*
- Moderate dynamic range & linearity due to open-loop operation. However, the physiological pH range is very limited (6.8 – 7.4)
- Gain error & offset can be removed w/ 2-point calibration

I-F Converter

Benefits:

- Requires no additional timer
- 2-4-2 pattern distinguishes each *I*_{DUT}, and reduces noise by averaging
- Only 300 pW power w/ custom stacked digital logic

Wireless Power Transfer (WPT)

- Resonant frequency: 985 MHz due to link efficiency & tissue compatibility [1]
- $L_1C_{1s} = L_2C_{1p} = \frac{1}{\omega^2} \rightarrow Z_{in}$ is purely real at resonant frequency
- Chose $L_2 = 40$ nH, $C_{2P} = 0.7$ pF balance link efficiency & backscatter signal

[1] O'Driscoll ISSCC'09

- Putting circuits and electrodes inside the coil to minimize chip area
- Making slots on the coil to pass DRC

Q drops from 15.2 to 10

Backscatter (BS) Uplink

Benefit: no additional power cost

Small bypass capacitor \rightarrow fast start-up, but large droops on supply

Design choice:

The 2nd tank resonant frequency moves by ~100 MHz \rightarrow 0.4% modulation & 3 mV droops

Optimized for low droops due to fast start-up requirement

WPT & BS Measurement Setup

Measurement Results (Wireless)

- Carrier frequency: 985 MHz; link efficiency: 0.033% via 2 mm tissue gap
- Fast start-up: 0.15 s; small supply droops: 3 mV
- BS signal modulation depth: 0.2%. Large drift caused by 1/f noise AM RX

Measurement Results (AFE)

- Potentiostat dynamic range: 2.5 80 nA (30.2 dB)
- pH amplifier dynamic range: 0.5 70 mV (43 dB)
- I-F converter covers larger dynamic range than potentiostat & pH amplifier

Measurement Results (Biological)

Transient response

- Sensor electrodes have been plated and functionalized before testing.
- High start-up current is limited by CCL.

Measurement Results (Biological)

- Proper ethanol range (0.0046 – 0.23 %) is covered.
- Proper pH range (6.8 7.4) is covered.

Power Breakdown & Die Photo

Prior Fully-Implantable Biosensors

Parameter	Ahmadi TBioCAS'09	Liao JSSC'12	Nazari VLSI'14	Kilinc JSEN'15	Agarwal VLSI'17	This Work
Tech. (nm)	180	130	180	180	65	65
Carrier Freq. (MHz)	13.56	1,800	915	13.56	900	985
Supply (V)	1.8	1.2	1.2	1.8	1	0.9
Power (µW)	198	3	6	1,500	4	0.97
Sensitivity (nA)	1	2	12 ¹	13	0.1	2.5 (alc.); 0.5 mV (pH)
Dynamic Range (dB)	60	37	32	48	71	30.1 (alc.); 43 (pH)
Size (mm)	4×8	10 (diameter)	1.4×1.4	12×12	1.2×1.2	0.85×1.5
Detection Technique	Amp. ²	Amp. ²	Amp. ² + Volt. ³	Amp. ² + Volt. ³	Amp. ²	Amp. ² + Volt. ³
Analyte	Glucose	Glucose	Glucose	APAP	$H_{2}0_{2}$	Ethanol/ H_20_2
Multi-parameter?	No	No	No	BG⁴	No	BG⁴ + pH
External Components	Sensor, coil, capacitor	Sensor, coil	None	Sensor, coil, capacitor	None	None
	CICC 2018 San Diego, CA				¹ Read from figure ² Amperometry	e ³ Potentiometry ⁴ Background

Conclusion

- A wireless, fully-integrated injectable BioMote was designed for continuous, long-term alcohol monitoring
- Key challenges: **background cancellation**, **low-power** & **fast measurement**
- \circ To address this, we:
 - Developed a low-power multiparameter potentiostat enabling differential measurements to cancel background interference.
 - Developed a self-oscillating I-F converter and potentiostat w/ current control loop to minimize power.
 - Minimized measurement time w/ fast start-up and chronoamperometry.

Result: a first-reported sub-1 μW fully-integrated, injectable biosensor

Acknowledgments

The authors would like to thank

- Li Gao for technical discussions about electromagnetic design
- Alexander Sun for help with electrode plating
- CARI Therapeutics for market discussions
- NSF, NIH and Samsung for funding

