A Fast-Readout Mismatch-Insensitive Magnetoresistive Biosensor Front-End Achieving Sub-ppm Sensitivity

Xiahan Zhou, Michael Sveiven, Drew A. Hall

University of California, San Diego, La Jolla, CA, USA

Motivation: Point-of-Care (PoC) Devices

Centralized Laboratory

- Bulky instruments
- Professional personnel required
- Long turnaround time

Point-of-Care Devices

- Small and portable
- Easy operation
- Near instant results

NEED: Accurate and fast diagnostic tests

Magnetic Immunoassay

Magnetic sensor

Human biological samples intrinsically lack magnetic background \rightarrow high sensitivity

Giant Magnetoresistive (GMR) Sensor

Problem: Wide dynamic range AFE is required to accommodate large R_0/R_{sig}

Large baseline-to-signal ratio precludes high sensitivity detection

© 2019 IEEE International Solid-State Circuits Conference

Conventional MR AFE Architectures

Wheatstone bridge

Problem:

Sensor mismatch ΔR limits sensitivity

Magnetorelaxometry

Problem:

Fast transient signal \rightarrow requires fast-switching magnetic field and high speed ADC

System Architecture

Problems	Proposed Solutions
Large baseline/signal	Reference sensor
High speed ADC required	Down-modulator in PGA
Sensor mismatch	HFIR in ADC

Double Modulation Scheme

Reference sensor rejects MR baseline

Analog Front-End

Built-in down modulator relaxes speed requirement on ADC

© 2019 IEEE International Solid-State Circuits Conference

Sensor Mismatch

Sensor mismatch increases ADC dynamic range requirement

High Frequency Interference Rejection

ADC applies HP feedforward method to realize a fast-settling LPF function

High Frequency Interference Rejection

HFIR sampling technique rejects high frequency interference

PGA Implementation

- Switches remain closed after sensor selection for 100µs → provide a low impedance path for fast settling
- Switches revert to duty-cycled mode afterwards \rightarrow provide large bias resistance for low noise

Fast Settling Duty-Cycle Resistor (DCR)

Fast settling DCR reduces the settling time by 40×

© 2019 IEEE International Solid-State Circuits Conference

Incremental $\Delta\Sigma$ ADC

ADC Phase I

ADC Phase II

Die Photo and Power Breakdown

Digital Control Logic TSMC 180nm ADC **CMOS** process 0.41 mm Sensor PGA Bias 0.608 mm 0.9 mm 2.3 mm

© 2019 IEEE International Solid-State Circuits Conference

Measurement Results: ADC

HFIR improves ADC DR significantly when sensor mismatch > 2%

Measurement Results: System

The system achieves 0.98ppm (147 μ Ω) sensitivity with a readout time of 880ms

Measurement Results: BioAssay

Summary and Comparison

	H. Wang ISSCC 2009 [1]	S. Gambini JSSC 2013 [2]	T. Costa TBioCAS 2017 [3]	S.J. Han ISSCC 2007 [4]	D.A. Hall JSSC 2013 [5]	This Work
Sensor Type	LC	Hall	GMR	GMR	GMR	GMR
Sensor Resistance (kΩ)	N/A	N/A	0.85	N/A	1.92	0.15
MR Ratio (%)	N/A	N/A	5.37	N/A	9.2	9.04
MNP Size (nm)	1,000	1,000	250	50	50	50
Technology (µm)	0.13	0.18	0.35	0.25	0.18	0.18
AFE Architecture	LC oscillator	V/I converter	Amplifier	Mixer + PGA	TIA	PGA with Mixer
ADC Architecture	VCO-based	Inc. ΔΣ	No ADC	No ADC	ΔΣ	Inc. $\Delta\Sigma$ + HFIR
Input-referred Noise (nT/√Hz)	N/A	270	11.5 ^ψ	N/A	49	107.1 (low gain) 46.4 (high gain)
Sensor Mismatch Tolerance	N/A	N/A	N/A	N/A	N/A	10% (low gain) 2.5% (high gain)
Power/Ch (mW)*	N/A	0.825	4 .9Ψ	N/A	3.15	1.39
Area/Ch (mm ²)	N/A	0.012	3.17	N/A	0.219	0.249
Input-referred Baseline (mT)	N/A	0.007	1.84	N/A	7.09	< 0.235
Readout Time/Ch (ms)	400 [†]	50	1,000	250	250	11

* Does not include sensor bias and magnetic field generator.

 Ψ Does not include power and noise from ADC.

t Read from figures.

The chip achieves 22.7× faster readout time, >7.8× lower baseline, and 2.3× lower power than other GMR sensor-based designs

Conclusion

- Magnetic sensors are a promising candidate for PoC biosensing; however they suffer form large baseline/signal and sensor mismatch
- To address this we:
 - Used reference sensors to reduce baseline
 - Designed an integrated down-modulator to relax the ADC bandwidth requirement
 - Proposed a HFIR sampling technique to tolerate sensor mismatch
 - Designed a fast settling duty-cycle resistor to improve readout time
- Result: A design that achieves sub-ppm sensitivity and tolerates 10% sensor mismatch

Acknowledgement

- This work was supported in part by Qualcomm, Inc. and the National Science Foundation under grant No. ECCS-1454608
- The authors would like to thank MagArray, Inc. for providing the GMR sensors

Thank you for your attention