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Motivation

3

Major Challenges:

• Continuous reliable monitoring via a small integrated unit

• Ultra-low power interfaces with long battery life required 

Miniaturized Wearable & Implantable Devices

World of IoTs and m-Health

❖Automated, remote monitoring

❖Early detection/diagnosis



Conventional ECG Sensor
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Circuit parameters:

1) Amplifier Noise

2) Amplifier Gain

3) Amplifier BW

4) ADC Resolution

5) ADC Sampling Rate

FIXED!
Overdesigned system  

Unnecessarily high power

Conventional low power ECG acquisition system architecture



Bio Signals
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Special properties of ECG

 Low activity  (QRS complex over <15% of a period)

 Quasi-periodicity



Bio Signals: Data-Dependent Savings

Key Idea – Leverage inherent signal properties to adaptively reduce power
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Special properties of ECG

 Low activity  (QRS complex over <15% of a period)

 Quasi-periodicity



Adaptive ECG Acquisition System
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Adaptive ECG Acquisition System
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State-of-the-art low power ECG AFEs [1-2]

have 𝐏𝐀𝐌𝐏/𝐏𝐀𝐃𝐂 ≈ 10

Focus on noise-limited

amplifier power reduction 

[1] - Yan ISSCC’14 

[2] - Jeon ISSCC ‘14

Digitally assisted reconfigurable AFE  Data-dependent power savings



Adaptive ECG Acquisition System
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Digital Back-end 

Off-chip (FPGA)

❖ State-of-the-art low power ECG feature 

extraction processors [3] consume 450 nW [3] - Liu JSSC’14 



Adaptive ECG Acquisition System
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Real-time 

detection of 

P,Q,R,S,T 

peaks

(using DTW 

Dynamic Time 

Warping) 

Prediction

using

LMS-based 

adaptive 

filter 

Amplifier

power 

reduction

Dynamic 

reconfiguration 

of noise modes



Reconfigurable AFE: Amplifier

AFE Challenges:

❖ In-band flicker noise

❖ High CMRR (for 60Hz interference)

❖ High electrode polarization offset

❖ High input impedance requirement
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Reconfigurable AFE: Amplifier
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Reconfigurable AFE: Amplifier

Single-tail vs. Dual-tail OTA

❖ Constant CM for wide current

❖ CMFB issue – open loop gain 

changes with current 

OTA Topology Selection 
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Noise Reconfiguration:



Reconfigurable AFE: Amplifier

Noise Reconfiguration:

❖ Wide current tuning 
range (100 nA – 675 nA)

❖ Better noise efficiency
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Reconfigurable AFE: ADC

Reconfiguration:
❖ Sampling rate

❖ Resolution

Reconfigurable AFE: ADC
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SAR ADC

9-bit

Mode:

7-bit

Mode:



Digital Back-End Functionality
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𝑥[𝑛]: Detected R-R interval, 𝑦 𝑛 : Predicted R-R interval, 

𝑤𝑖: Adaptive-filter coefficients, 𝜇:Adaptation parameter.

LMS-based Adaptive Linear Predictive Filter



Digital Back-End Functionality
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❖ Prediction independent of the feature-

extraction algorithm (e.g., DTW)

❖ 5th order filter sufficiently accurate for

quasi-periodic ECG with typical heart-rate

variability (HRV)

LMS-based Adaptive Linear Predictive Filter



Digital Back-End Functionality
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❖ One prediction per heart beat (72 beats/min)

❖ Operation at ~1 Hz

❖ Simulated < 10nW power

Negligible power overhead for reconfiguration!

LMS-based Adaptive Linear Predictive Filter



Noise Power Trade-off
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Measured amplifier input-referred noise



2.5× data-dependent power reduction!

Data-Dependent Power Savings
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Adaptive Acquisition Performance

Performance characterized using ECG data from 

MIT-BIH Arrhythmia database
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❖ Power savings over prolonged duration of slow HRV

❖ Recurring false prediction with extreme irregular 

cardiac activity is itself an indicator of an anomaly 

No compromise in anomaly detection capability! 

False prediction due 

to abrupt variability
Filter quickly adapts to 

make correct predictions



Adaptive Acquisition Performance

< 0.35% in extracted signal metrics of interest! 
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Δt – Peak positions in data acquired 

adaptively relative to that when AFE 

is always in high power mode 

Tavg – Avg. separation between 

consecutive peaks



Performance Comparison
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Demonstrated activity-dependent amplifier power savings! 



Conclusion

 Dynamic noise-power trade-off in amplifier

 Aided by LMS filter with negligible power overhead

 Data-dependent signal acquisition demonstrated to achieve 

2.5× power reduction 

 Useful technique particularly for IoT mHealth applications
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