A Dynamically Reconfigurable ECG Analog Front-End with a 2.5× Data-Dependent Power Reduction

Somok Mondal¹, Chung-Lun Hsu¹, Roozbeh Jafari², Drew Hall¹

¹University of California, San Diego ²Texas A&M University

Electrical and Computer Engineering JACOBS SCHOOL OF ENGINEERING

Outline

- Introduction and Motivation
- Adaptive Acquisition System
- Circuit Implementation
- Measurement Results
- Conclusion

Motivation

World of IoTs and m-Health

Miniaturized Wearable & Implantable Devices

- Automated, remote monitoring
- Early detection/diagnosis

Major Challenges:

- Continuous reliable monitoring via a small integrated unit
- Ultra-low power interfaces with long battery life required

Conventional ECG Sensor

Conventional low power ECG acquisition system architecture

Circuit parameters:

- 1) Amplifier Noise
- 2) Amplifier Gain
- 3) Amplifier BW
- 4) ADC Resolution
- 5) ADC Sampling Rate____

– FIXED!

Overdesigned system → Unnecessarily high power

Bio Signals

Bio Signals: Data-Dependent Savings

Key Idea – Leverage inherent signal properties to adaptively reduce power

Digitally assisted reconfigurable AFE \rightarrow Data-dependent power savings

State-of-the-art low power ECG AFEs [1-2]

have $P_{AMP}/P_{ADC} \approx 10$

Focus on <u>noise-limited</u> amplifier power reduction [1] - Yan ISSCC'14 [2] - Jeon ISSCC '14

Digital Back-end → Off-chip (FPGA)

 State-of-the-art low power ECG feature extraction processors [3] consume 450 nW [3] - Liu JSSC'14

AFE Challenges:

- In-band flicker noise
- High CMRR (for 60Hz interference)
- High electrode polarization offset
- High input impedance requirement

AFE Challenges:

- In-band flicker noise
- High CMRR (for 60Hz interference)
- High electrode polarization offset
- High input impedance requirement

AFE Challenges:

- In-band flicker noise
- High CMRR (for 60Hz interference)
- High electrode polarization offset
- High input impedance requirement

Reconfigurable AFE: ADC

SAR ADC

Digital Back-End Functionality

LMS-based Adaptive Linear Predictive Filter

 $y[n] = w_1[n] * x[n-1] + \dots + w_N[n] * x[n-N]$ e[n] = y[n] - x[n] $w_i[n+1] = w_i[n] + \mu * x[n-i] * e[n]$

x[n]: Detected R-R interval, y[n]: Predicted R-R interval, w_i : Adaptive-filter coefficients, μ : Adaptation parameter.

Digital Back-End Functionality

LMS-based Adaptive Linear Predictive Filter

Digital Back-End Functionality

LMS-based Adaptive Linear Predictive Filter

- One prediction per heart beat (72 beats/min)
- ✤ Operation at ~1 Hz
- ✤ Simulated < 10nW power</p>

Negligible power overhead for reconfiguration!

Noise Power Trade-off

Measured amplifier input-referred noise

Data-Dependent Power Savings

2.5× data-dependent power reduction!

Adaptive Acquisition Performance

Performance characterized using ECG data from MIT-BIH Arrhythmia database

Power savings over prolonged duration of slow HRV
 Recurring false prediction with extreme irregular cardiac activity is itself an indicator of an anomaly

No compromise in anomaly detection capability!

Adaptive Acquisition Performance

Peak Detection Errors

	$\sigma_{\Delta t}$ (ms)	$\sigma_{\Delta t}/T_{avg}$ (%)
Q	2.27	0.29
R	2.19	0.28
S	2.42	0.31
Р	12.01	1.53
Т	16.72	2.13

 Δt – Peak positions in data acquired adaptively relative to that when AFE is always in high power mode

Tavg – Avg. separation between consecutive peaks

< 0.35% in extracted signal metrics of interest!

Performance Comparison

	This work	ISSCC'15	ISSCC'14	ISSCC'14	VLSI'12	JSSC'11	
Application	ECG	ECG	ECG	ECG	ECG	ECG	
Supply (V)	0.8	0.6	1.3	0.6	0.6	1.8	
Amplifier							
Power (nW)	272-734#	1	559*	16.8	831*	$10,600^{*}$	
Gain (dB)	22 - 43	32	31-43	51 - 96	35 - 70	40 - 60	
BW (Hz)	250	370	130	250	156	170	
Integ. Noise	1.00 - 2.01 #	26	4.9	6 52	3 44	1 1	
(µV _{rms})	1.90 - 2.91	20	т.2	0.52	5.77	1.1	
CMRR (dB)	82	60	90	_	70	105	
ADC							
Power (nW)	34.6**	1.1	67*	1.8	19 [‡]	4,400	
@1 kSps				(500 Sps)		(2 kSps)	
Resolution	5-9	10	7-9	8	9	11	
F _{sample} (kSps)	1-10	1.1-100	0.512	0.5	_	2	
ENOB _{max}	8.75	9.2	8.96	7.14	8.01 [‡]	10.6	
INL (LSBs)	0.58	0.87	_	1.8	0.55	0.3	
DNL (LSBs)	0.80	0.96	_	1	0.48	0.5	
AFE System							
Power (nW)	307 – 769 ⁺	3	626	18.6	850	14,000	
Tunable Knobs	Noise, Av, #Bits	_	Av, #Bits	Av	Av	Av, BW	
$P_{\rm Amp}/P_{\rm ADC}$	7.86 - 21.2	0.91	8.34	9.33	43.74	2.41	

+ The DSP control and SAR logic were implemented off-chip on an FPGA and are not reported. **ADC in 9-bit mode.

[#]AFE in 35 dB gain mode. [‡]Estimated from reported SNDR and FOM. ^{*}From reported component-wise breakdown.

Demonstrated activity-dependent amplifier power savings!

Conclusion

- Dynamic noise-power trade-off in amplifier
- Aided by LMS filter with negligible power overhead
- Data-dependent signal acquisition demonstrated to achieve
 2.5× power reduction
- Useful technique particularly for IoT mHealth applications

Acknowledgements: UCSD Center for Wireless Communication (CWC) for student support and SRC for chip fabrication.