A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL

Chung-Lun Hsu and Drew A. Hall

University of California, San Diego, La Jolla, CA, USA

Motivation: Current Input Biosensors

Patch Clamp

Electrochemical

Nanotube

Nanopore

A front-end with >120dB DR and >60dB linearity is required.

Conventional Current-Input AFE

X High noise: $i_n^2 = BW \cdot 4k_BT/R_F$ X Low DR: $i_{s,max} = V_{DD}/R_F$

C-TA $S_{\rm rst}$ increasing i_{s} $\boldsymbol{V}_{\text{dd}}$ V_o reset amplifying T_{p} O Low noise X Periodic reset X Low DR:

 $i_{\rm s,max} = C_{\rm F} V_{\rm DD} / T_{\rm P}$

DR is limited by circuit noise and supply voltage.

reset

Current-Input AFE Using C-TIA

O Low noiseO Continuous-time△ Improved DR

Challenge: Achieving >120dB DR and >60dB linearity

System Overview

Hourglass ADC

C-TIA with Improved DR Conventional C-TIA

Goal: Increase DR, keep amplifying w/o saturation

Goal: Increase DR, keep amplifying w/o saturation Method: Flipping the input polarity asynchronously

Two continuous-time comparators controls the hourglass switch

- C-TIA: low input-referred current noise
- Asynchronous Hourglass switching: $i_{sig} >> C_F V_{DD} / T_p$

The DR of a C-TIA is improved with an asynchronous Hourglass switch.

Hourglass ADC

• The comparators work as a 1-bit quantizer

Hourglass ADC

• The comparators work as a 1-bit quantizer

International Solid-State Circuits Conference

Hourglass ADC

• The comparators work as a 1-bit quantizer

International Solid-State Circuits Conference

Hourglass ADC with Noise-Shaping

Hourglass ADC with Noise-Shaping

Hourglass ADC with Noise-Shaping

The Hourglass ADC is an asynchronous 1^{st} -order $\Delta\Sigma$ with improved resolution.

Linearity in Hourglass ADC

Linearity in Hourglass ADC

The linearity of the I-to-F conversion in an Hourglass ADC is well-defined.

Linearity Calibration in Hourglass ADC

• BW vs. Linearity

Linearity Calibration in Hourglass ADC

• BW vs. Linearity

This design: $3.2 \times f_{dir,max}$ w/ linear compensation @ 16x power reduction compared to the 8-b linearity case

- Foreground characterize the *I*-to-*F* curve: BW_{loop} and A_{loop}
- Increase power efficiency using a lower BW OPAMP

The foreground calibration improves the Hourglass ADC energy efficiency.

Linearity Calibration in Hourglass ADC

• Use an I-DAC to measure *I*-to-*F* curve and poly-fit the non-linearity

Closed-Loop Hourglass ADC

• The I-DAC subtracts i_s by linear extrapolating the input at f_{OSR}

© 2018 IEEE International Solid-State Circuits Conference 19.5: A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL

Closed-Loop Hourglass ADC

• The I-DAC subtracts i_s by linear extrapolating the input at f_{OSR} $i_{fine} = i_s [n] - \{ 2i [n-1] - i [n-2] \} < i_{s,FS}/2^9$ with OSR > 71

© 2018 IEEE International Solid-State Circuits Conference 19.5: A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL

System Overview

Hourglass ADC

O High DR
O Async. quantization
O Noise-shaping
O High linearity

19.5: A Current-Measurement Front-End with 160dB Dynamic Range and 7ppm INL

Benefit:

- Increase f_{p2} by $g_m R_o$
- Reduce C_c by 3-4×
- Improve power efficiency

Low-Leakage Switch

Hourglass Switch

Continuous-Time Comparator

- Switched-capacitor sampling:
 - Sample at start-up
 - \circ Store both $V_{\rm R}$ and $V_{\rm os}$

Continuous-Time Comparator

- Switched-capacitor sampling:
 - o Sample at start-up
 - \circ Store both $V_{\rm R}$ and $V_{\rm os}$

Pre-amp + dynamic amp:
 Reduce propagation delay

Feedback Loop

9-bit Binary-Weighted I-DAC

Die Photo

TSMC 180nm CMOS process

Measurement Results

Hourglass ADC with DAC off

The linearity of the Hourglass ADC is improved by >37×.

Measurement Results

Hourglass ADC with DAC off

The input-referred noise in the Hourglass ADC is < $30fA/\sqrt{Hz}$.

Measurement Results

Hourglass ADC with DAC on

The linearity of the entire current-measurement front-end is < ±7ppm.

Power Breakdown

The total power consumption is 295 µW.

Summary & Comparison

	TBioCAS 07	TBioCAS 08	TBioCAS 15	JSSC 15	TBioCAS 16	TBioCAS 17	This Work
Architecture	SDM	SDM	I-to-F	SDM	SDM	SDM	A-SDM
Process [µm]	0.5	0.5	0.18	0.18	0.5	0.35	0.18
Power [µW]	80	60	5,220	80	240	16.8	295
Min Input	100 fA	12 pA	204 fA	1 nA	100 fA	100 pA	100 fA
Max Input	1 μA	430 nA	11.6 µA	4 µA	16 µA	3 µA	10 µA
Conversion time for Min Input [ms]	8,330	10,000	250	400	1,000	4	400
Normalized conversion time for 1nA [ms]	838	120	0.1	400	1	0.4	0.04
Max Linearity Error	3.9 nA	3.0 nA	1.16 µA	0.9 nA	1.6 nA	0.1 nA	70 pA
Dynamic Range @ BW [dB]	140 @ <0.1Hz	91 @ <0.1Hz	155 @ 1.4Hz	72 @ 2.5Hz	164 @ 1.0Hz	88.9 @ 1 kHz	100 @ 1.8kHz 120 @ 180Hz 140 @ 18Hz 160 @ 1.8Hz
FOMschreier [dB]	172	132	181	103	183	158	167 @ 1.8kHz 177 @ 180Hz 187 @ 18Hz 197 @ 1.8Hz

$$FOM_{Schreier} (dB) = DR(dB) + 10log(1/2/T_{conv}/P)$$

Summary & Comparison

DR = 160 dB

	TBioCAS 07	TBioCAS 08	TBioCAS 15	JSSC 15	TBioCAS 16	TBioCAS 17	This Work
Architecture	SDM	SDM	I-to-F	SDM	SDM	SDM	A-SDM
Process [µm]	0.5	0.5	0.18	0.18	0.5	0.35	0.18
Power [µW]	80	60	5,220	80	240	16.8	295
Min Input	100 fA	12 pA	204 fA	1 nA	100 fA	100 pA	100 fA
Max Input	1 μA	430 nA	11.6 µA	4 µA	16 µA	3 µA	10 µA
Conversion time for Min Input [ms]	8,330	10,000	250	400	1,000	4	400
Normalized conversion time for 1nA [ms]	838	120	0.1	400	1	0.4	0.04
Max Linearity Error	3.9 nA	3.0 nA	1.16 µA	0.9 nA	1.6 nA	0.1 nA	70 pA
Dynamic Range @ BW [dB]	140 @ <0.1Hz	91 @ <0.1Hz	155 @ 1.4Hz	72 @ 2.5Hz	164 @ 1.0Hz	88.9 @ 1 kHz	100 @ 1.8kHz 120 @ 180Hz 140 @ 18Hz 160 @ 1.8Hz
FOM _{Schreier} [dB]	172	132	181	103	183	158	167 @ 1.8kHz 177 @ 180Hz 187 @ 18Hz 197 @ 1.8Hz

$$FOM_{Schreier} (dB) = DR(dB) + 10log(1/2/T_{conv}/P)$$

Summary & Comparison T_{conv} 2.5× faster

	TBioCAS 07	TBioCAS 08	TBioCAS 15	JSSC 15	TBioCAS 16	TBioCAS 17	This Work
Architecture	SDM	SDM	I-to-F	SDM	SDM	SDM	A-SDM
Process [µm]	0.5	0.5	0.18	0.18	0.5	0.35	0.18
Power [µW]	80	60	5,220	80	240	16.8	295
Min Input	100 fA	12 pA	204 fA	1 nA	100 fA	100 pA	100 fA
Max Input	1 μA	430 nA	11.6 µA	4 µA	16 µA	3 µA	10 µA
Conversion time for Min Input [ms]	8,330	10,000	250	400	1,000	4	400
Normalized conversion time for 1nA [ms]	838	120	0.1	400	1	0.4	0.04
Max Linearity Error	3.9 nA	3.0 nA	1.16 µA	0.9 nA	1.6 nA	0.1 nA	70 pA
Dynamic Range @ BW [dB]	140 @ <0.1Hz	91 @ <0.1Hz	155 @ 1.4Hz	72 @ 2.5Hz	164 @ 1.0Hz	88.9 @ 1 kHz	100 @ 1.8kHz 120 @ 180Hz 140 @ 18Hz 160 @ 1.8Hz
FOM _{Schreier} [dB]	172	132	181	103	183	158	167 @ 1.8kHz 177 @ 180Hz 187 @ 18Hz 197 @ 1.8Hz

$$FOM_{Schreier} (dB) = DR(dB) + 10log(1/2/T_{conv}/P)$$

Summary & Comparison

FOM = 197 dB

	TBioCAS 07	TBioCAS 08	TBioCAS 15	JSSC 15	TBioCAS 16	TBioCAS 17	This Work
Architecture	SDM	SDM	I-to-F	SDM	SDM	SDM	A-SDM
Process [µm]	0.5	0.5	0.18	0.18	0.5	0.35	0.18
Power [µW]	80	60	5,220	80	240	16.8	295
Min Input	100 fA	12 pA	204 fA	1 nA	100 fA	100 pA	100 fA
Max Input	1 μA	430 nA	11.6 µA	4 µA	16 µA	3 µA	10 µA
Conversion time for Min Input [ms]	8,330	10,000	250	400	1,000	4	400
Normalized conversion time for 1nA [ms]	838	120	0.1	400	1	0.4	0.04
Max Linearity Error	3.9 nA	3.0 nA	1.16 µA	0.9 nA	1.6 nA	0.1 nA	70 pA
Dynamic Range @ BW [dB]	140 @ <0.1Hz	91 @ <0.1Hz	155 @ 1.4Hz	72 @ 2.5Hz	164 @ 1.0Hz	88.9 @ 1 kHz	100 @ 1.8kHz 120 @ 180Hz 140 @ 18Hz 160 @ 1.8Hz
FOMschreier [dB]	172	132	181	103	183	158	167 @ 1.8kHz 177 @ 180Hz 187 @ 18Hz 197 @ 1.8Hz
$FOM_{Schreier} (dB) = DR(dB) + 10log(1/2/T_{conv}/P)$							

Summary & Comparison

Conclusions

- The current measurement front-end enables precise wide dynamic range for bio-sensing applications
- Key challenges: <u>dynamic range</u> and <u>linearity</u>
- To address this, we:
 - Designed an <u>Hourglass ADC</u> to increase DR and decrease quantization noise
 - Designed a <u>DAC with a 1st-order predictor</u> to further increase DR and improve the front-end power efficiency
 - Used <u>DEM</u> and <u>linearity compensation</u> to improve linearity
- Result:
 - A current measurement front-end with <u>160dB DR</u>, <u>7ppm INL</u>, and <u>197dB</u> <u>FOM</u>