

A 67-µW Ultra-Low Power PVT-Robust MedRadio Transmitter

Somok Mondal and Drew A. Hall

University of California, San Digeo La Jolla, CA, USA

SANGELESS The Internet of Medical Things – Io(M)T

Miniaturized Wearable & Implantable Devices:

- ✓ Automated, remote monitoring
- ✓ Early detection/diagnosis

Enabling connected health applications

A Wireless IoMT BioSensor

- Medical Device Radiocommunications Service (MedRadio): ~400 MHz
- Short-range transmitter (<<u>2 meters</u> TX distance)
- Ultra low power \rightarrow Duty-cycled operation

A Wireless IoMT BioSensor Node

- Medical Device Radiocommunications Service (MedRadio): ~400 MHz
 - Frequency stability ±100 ppm/°C over 0 to 55 °C
 - Attenuate out-of-band/spurious emissions by 20 dBc

"Medical Device Radio Communications Service," in Electronic Code of Federal Regulations (e-CFR), vol. Title 47, Chapter I, Subchapter D, Part 95, Oct. 2018.

Conventional Short-Range Transmitter

Key challenge for an Io*M*T transmitter: Low power RF frequency synthesis

Low Power Frequency Synthesizers

6

Injection-locked clock multiplier (ILCM):

Low Power Frequency Synthesizers

Conventional ring oscillator based ILCM: [JSSC '02]

- Robust
- Power hungry
- Slow start-up

Open-loop ILCM: [JSSC '11]

- PLL-free ultra-low power
- Very sensitive to PVT
 - Constant temperature assumed (human body)
- 🙁 Loss of lock 😣 Large REF spur

PVT robustness is a major issue

Open-loop ILCM with Initial calibration [JSSC '14] [JSSC '17]; Temperature compensation [CICC'19]

- PLL-free, fast start-up
- Robust to static PV, dynamic T
- Slow start-up (if calibrated each time)
- Dynamic V not addressed
- Low/moderate power

Motivation and Proposed Work

Open-loop ILCM:

- Low Power
- **PVT** sensitive X

Proposed RF frequency synthesis:

Low power **PVT** robust

PVT-robust 4-phase sinusoids:

2× frequency

<Tu02A>-<2>

8

PVT Robust Polyphase Generation

Each phasor shifted equally by $\Delta RC/2RC$ and attenuated

Proposed Short-Range Transmitter Overview

Ultra low-power, PLL-free, PVT-robust MedRadio Tx

<Tu02A>-<2>

International Microwave Symposium

Proposed Short-Range Transmitter Overview

11

Polyphase filter (PPF) integrated with crystal oscillator

- PPF integrated within crystal oscillator
- [Nadeau ESSCIRC'17] reported PPF integrated with FBAR resonator for QPSK

No power overhead to drive the PPF!

- ac-coupled cross-coupled $g_{\rm m}$
- \rightarrow Avoid latch-up due to high-dc gain

- ac-coupled cross-coupled $g_{\rm m}$
- \rightarrow Avoid latch-up due to high-dc gain

- Parasitic oscillation mode
- \rightarrow Due to negative capacitor
- \rightarrow Resistive bias to damp these oscillations

- ac-coupled cross-coupled $g_{\rm m}$
- \rightarrow Avoid latch-up due to high-dc gain

- Parasitic oscillation mode
- \rightarrow Due to negative capacitor
- \rightarrow Resistive bias to damp these oscillations

- ac-coupled
- → Allows complementary topology
- \rightarrow 2× $g_{\rm m}$

Chirp injector \rightarrow fast start-up Finject Start trl. Time

- Frequencies around 50 MHz
- Swept using a ring voltage-controlled oscillator (VCO)

Amplitude control

 \rightarrow lower power

- Schmitt-trigger based
 amplitude comparator
- Digitally programmable comparison thresholds

Circuit Implementation: Polyphase Filter

Polyphase sinusoids at 50 MHz:

✓ No frequency error
 ✓ No voltage dependence
 ✓ Robust to PT variations

 \bigcirc IMS

International Microwave Symposium

17

Circuit Implementation: Polyphase Filter

18

Three inner rings
 → 16-phase generation

- Fourth balanced ring
 - → phase averaging and maintaining symmetry with loaded outputs
- Mismatch, systematic imbalances
 → small spurs @ multiples of 50 MHz
 → good carrier to spur ratio (CSR) due to harmonic suppression by PA

Circuit Implementation: Polyphase Filter

No power overhead for driving the PPF

Circuit Implementation: Edge Combiner

PPF output buffer

Low power digital circuits for 8× frequency multiplication

Circuit Implementation: Power Amplifier

 $P_{\rm out} \propto V_{\rm DD}^2/R_{\rm p}$

Conventional long-range PAs

 \rightarrow Require down-transformation of the 50 Ohm antenna

 \rightarrow $R_{\rm p}$ is typically a few Ω s

Short-range PAs

 \rightarrow Require up-transformation of the 50 Om antenna

 \rightarrow $R_{\rm p}$ is typically a few k Ω s

- $R_{\rm p} = NR_{\rm L}$
- $N > 1 \rightarrow$ losses in impedance transformation network (as R_p comparable to the equivalent parallel

parasitic R_{par} of the impedance transformation)

Losses in impedance transformation network limits short-range PA efficiency

SANGELESS Circuit Implementation: Power Amplifier

Comparison of PA topologies

Class-E i	nverse	PA
-----------	--------	----

РА Туре	Output power P _{out}	Theoretical Efficiency η_{max}		
Digital PA [Pandey JSSC'11]	$0.5V_{\rm DD}^2/R_{\rm p}$	63%		
Class-F	$0.63V_{\rm DD}^2/R_{\rm p}$	~100%		
Class-E with shunt capacitor	$0.57V_{\rm DD}^2/R_{\rm p}$	~100%		
Class-E with shunt inductor	$0.06V_{\rm DD}^2/R_{\rm p}$	~100%		

$$P_{\rm out} = \frac{8}{\pi^2 (\pi^2 + 4)} V_{\rm DD}^2 / R_{\rm p} = 0.058 V_{\rm DD}^2 / R_{\rm P}$$

- Conventional PAs intended to deliver high Pout
- Low P_{out} readily delivered with class-E inverse [Kazimierzuk JSSC'81]

✓ Low 0.2V V_{DD}
 ✓ No impedance transformation network

Class-E with shunt inductor a good choice for short-range PAs

Chip Micrograph

PPF occupies roughly same area as XO \rightarrow 2× area overhead for PVT-robust operation

Ultra-low power transmitter in 22 nm CMOS FDX

PCB Photo and Measurement Setup

Off-chip crystal and inductors

Short-range communication ~ 1 meter

Measurement Results: Robustness to Temperature and Voltage Variations

Temperature sensitivity < 25 ppm; Supply sensitivity < 2 ppm

Measurement Results: RF Carrier Spectra

Carrier to spur ratio (CSR) > 40 dB across -30 to 90 °C

<Tu02A>-<2>

RFIC

Measurement Results: Phase Noise

27

-110 dBc/Hz @ 300 kHz across temperature

Measurement Results: Received Spectra

BPSK modulated spectra at 1 Mbps received at 1-meter distance from the transmitter

Measurement Results: Start-up Transients

Fast Start-up ~ 40 ns; aggressive duty-cycling

<Tu02A>-<2>

International Microwave Symposium

Comparison to the State-of-the-Art

	JSSC'11	TBioCAS'13	RFIC'13	JSSC'14	RFIC'15	ISSCC'19	This work	
Supply (V)	0.7	0.6	0.7/1.2	0.8	1.2	1.2	0.4/0.2	
Technology (nm)	90	130	65	65	90	65	22 FDX	
Active Area (mm ²)	0.04	0.06	0.41	0.08	0.29	0.49	0.03	
Frequency (MHz)	400	400	400	900	915	2400	400	
	Frequency Synthesizer							
Phase Noise	-105.2	-87.9	-69	-100	-100.2	-118	-109	
(dBc/Hz)	(@0.3 MHz)	(@0.3 MHz)	(@0.1 MHz)	(@1 MHz)	(@1 MHz)	(@1 MHz)	(@0.1 MHz)	
Power (µW)	<78	-	72	538	224	-	10	
Freq. Multiplier	y ×	25×	25×	9×	60×	Ι×	δ×	
CSR (dB)	44	-	-	56	-	-	45	
				Power Amplif	ier			
P _{out} (dBm)	-17	-17	-16	-15	-18	-8.4	-17.5	
PA Efficiency (%)	30	-	33	9	12.5	-	40	
Power (µW)	63	-	80	351	110	-	44	
				Crystal Oscillator/R	eference			
Frequency (MHz)	45	16	16	100	16	16	50	
Power (µW)	<12	External	External	External	32	External	13	
				Transmitter	•			
Topology	ILRO+EC-PA	2-step ILRO	PLL+PA	ILRO+PA	PLL+PA	PO.+PLL calib.	XO-PPF+EC+PA	
Modulation	BFSK	OOK	BFSK	QPSK	OOK	GFSK	BPSK	
Data-rate (kbps)	200	1000	80	100,000	3,000	1000	1000	
Energy/bit (pJ/bit)	450	160	2375	13	124	606	67	
Settling Time (ns)	250	250	-	88	-	-	40 150 µs(w XO)	
PVT-robust?	$P \times V \times T \times$	$P \checkmark V \times T \times$	P✓ V✓ T✓	$P \checkmark V \times T \times$	P✓ V✓ T✓	P✓ V✓ T✓	P✓ V✓ T✓	
Calibration reqd.?	\checkmark	\checkmark	×	\checkmark	×	×	×	
Total Power (µW)	90	160	190	1300	374	606	67	
Global Efficiency%	22	16	13	4	12	24	27	

IEEE 🔊

<Tu02A>-<2>

International Microwave Symposium

Comparison Landscape

Best energy-efficiency (67 pJ/bit) and lowest power among sub-1mW transmitters

<Tu02A>-<2>

RFIC

Comparison Landscape

Highest TX global efficiency of 27 % among short-range radios in addition to PVT-robustness

<Tu02A>-<2>

RFIC

Conclusions

PVT-robust Frequency Synthesis

A 67 µW, 27% GE MedRadio Transmitter

- ✓ Calibration-free
- ✓ Regulation-free
- ✓ Best-reported low power of 67 µW and global efficiency of 27% for shortrange narrowband transmitters was achieved.

Future Work

- ✓ Integration with FBAR for higher frequencies *e.g.*, 2.4 GHz BLE
- ✓ Can, in theory, replace ILCMs with small frequency multiplication factor for several other applications *e.g.*, mm-wave frequency synthesis

Acknowledgements

- Dr. Li Gao, Corentin Pochet and Prof. Peter Asbeck for technical help
- Global Foundries for chip fabrication •

Backup Slides

The Internet of Things

• Communication to a nearby data-aggregator (e.g., smartphone, smartwatch, etc.)

Ultra-Low Power Operation

• Miniaturized sensor nodes

<Tu02A>-<2>

36