A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Corentin Pochet, Jiannan Huang, Patrick Mercier, and Drew A. Hall

University of California, San Diego

Self Introduction

Corentin Pochet

- B.Sc. and M.Sc. from ULB, Brussels, Belgium
- Henri Benedictus BAEF Fellow

 Research focused on low-power power sensor front-ends and time-based ADCs

Needs and Challenges

Continuous wearable physiological monitoring:

- Improved health monitoring
- Sport performance monitoring
- Rare event (anomaly) detection

Needs and Challenges

Continuous wearable physiological monitoring:

- Improved health monitoring
- Sport performance monitoring
- Rare event (anomaly) detection

Requirements:

- Low power (<10 μW)
- Low noise (<5 µVrms)
- Low bandwidth (< 1 kHz)
- High input-impedance (>50 MΩ)
- High dynamic range (>90 dB)

PGA-ADC Front-ends

Direct Digitization Front-ends

VCO-based ADCs

Pros:

- Continuous-time ΔΣ
- Open-loop noise-shaping
- High scalability with process

noise shaping

VCO-based ADCs

Pros:

- Continuous-time ΔΣ
- Open-loop noise-shaping
- High scalability with process

Cons:

- Very non-linear
- PVT dependent gain

Limited to 1st -order noise-shaping

$$D_{\text{OUT}} = \underbrace{(G_{\text{m}} K_{\text{CCO}})}_{G_{\text{ADC}}} V_{\text{IN}} + E_{\text{Q}}(1-z^{-1})$$

© 2021 IEEE International Solid-State Circuits Conference 28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

VCO-based ADCs – Prior art

- + High Z_№ + Small area
- Limited input range and linearity

- + High linearity and input range + No 1/f noise
- Low Z_{IN}

+ 2nd-order noise-shaping

- Common-mode sensitive

- Flicker noise sensitive

System design

2nd order ADC - Core concept

2nd order ADC - Benefits

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

But, there are a few issues with this architecture...

Issue #1: Gated Ring Oscillator quantizer

 \rightarrow GRO mismatch induces non-linearity \rightarrow GRO requires long hold time

Issues with GRO-based quantizer

- Path mismatches causes even-order harmonics
- Long hold time leads to charge leakage

ADC spectrum with GRO mismatch

Typical mismatch $\sigma = 5\%$ degrade SFDR by > 30 dB

Issues with GRO-based quantizer

Two issues due to GRO-based quantization:

- 1. Mismatches cause SFDR degradation
- 2. Inactive GRO require to hold charge for long period of time

Two innovations to solve these issues:

- 1. Sign feed-forwarding from the PFD enabling path merging
- 2. Gated-inverted ring-oscillator (GIRO) improving the matching

PFD Sign Detection

Detects and feedforwards the signal polarity

© 2021 IEEE International Solid-State Circuits Conference

GIRO-based quantizer

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Quantizer mismatch comparison

Typical path mismatch $\sigma\sim 5\%$

- Inactive path required to hold state for long period (ms)
- Path matching affected by I_B, C, V_{sv}
- Minimum layout distance 10s μ m
- Typical path mismatch $\sigma \sim 0.5\%$
- + Always active
- + Path matching only affected by $V_{\rm s}$
- + Adjacent layout
- V_{sw} : Voltage swing I_{B} : Bias current C : Node capacitance

ADC spectrum with GIRO mismatch

Typical mismatch $\sigma = 0.5\%$ degrades SFDR by <10 dB

Issue #2: PWM Encoding

PWM quantizer architectures

Multi-Phase/Multi Quantizers

© 2021 IEEE International Solid-State Circuits Conference

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Number of Phases Tradeoff

5 phases selected from this analysis

Issue #3: Low Input-Impedance

Input-Impedance Boosting

Concept used in CCIAs to boost the input impedance

Proposed Sensor Front-end

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Circuit implementation

G_m-cell design

- Source degenerated *G*_m-cell for linearity
- Thick-gate device to avoid common-mode drift

CCO Design

- Differential stages with PMOS cross-coupling
- 30 stages tapped every 6 nodes
 - Equidistant phase-tapping around 2π

GIRO Design

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Measurement Results

Die Micrograph & Power breakdown Power Max - 5.8µW

Chip designed in TSMC65 LP with active area 0.075 mm²

Measured SNDR

Measured DR and Power Scaling

Measured Two-tone Linearity

Measured Input-Impedance

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Measured ECG with Motion Artifacts

Measured EOG and EMG

28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Performance Summary

	J.Huang VLSI 2020	S.Li CICC 2020	W.Jiang JSSC 2017	C.Lee ISSCC 2020	J-S Bang VLSI 2018	H.Chandrakumar JSSC 2019	This work
Integration Domain	Time	Time	Time	Hybrid	Voltage	Voltage	Time
Topology	1 st -ord. VCO	1 st -ord. VCO	Open-loop VCO	2 nd -ord. Gm-C/VCO	3^{rd} -ord. CT $\Delta\Sigma$	$\begin{array}{c} \text{CCIA} + 3^{\text{rd}} \text{-ord.} \\ \text{CT}\Delta\Sigma \end{array}$	2 nd -ord. VCO
Technology [nm]	65	40	40	65	180	65	65
Area [mm ²]	0.08	0.025	0.135	0.078	0.5	0.113	0.075
Supply (A/D) [V]	1.2/0.7	0.8/0.6	1.2/0.45	1	1	1.2	1.2/0.8
Power [µW]	3.2	4.5	7	6.5	6.5	7.3	4.25/5.8
Coupling	ac	ac	ac	dc	ac	ac	ac
Input-range [mV _{pp}]	250	100	100	300	360	200	400
Sampling frequency [kHz]	32	2500	3	1280	12.8	400	200
BW [kHz]	0.5	10	0.2	10	0.3	5	1
CMRR [dB]	98	83	66	76	84	78	89
Input-referred noise $[nV/\sqrt{Hz}]$	53	36	367	95	265	90	110
SNDR [dB]	88.1	78.5	75.2 dB	80.4	84.3	78	92.3
DR [dB]	94.2	79	77.4 dB	80.4	84.3	81	92.3
SFDR [dB]	105.1	91	79	92.2	104.7	81	110.3
Z_{in} at DC [MΩ]	4	0.22	00	00	39	1500	60
Z_{in} at BW [MΩ]	4	0.22	8	13.3	39	19.6	50
FoM _{SNDR} [dB]	170	172	149.6	172.3	160.9	166.4	174.7

© 2021 IEEE International Solid-State Circuits Conference 28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order

VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Performance Summary

	J.Huang VLSI 2020	S.Li CICC 2020	W.Jiang JSSC 2017	C.Lee ISSCC 2020	J-S Bang VLSI 2018	H.Chandrakumar JSSC 2019	This work
Integration Domain	Time	Time	Time	Hybrid	Voltage	Voltage	Time
Topology	1 st -ord. VCO	1 st -ord. VCO	Open-loop VCO	2 nd -ord. Gm-C/VCO	3^{rd} -ord. CT $\Delta\Sigma$	$\begin{array}{c} \text{CCIA} + 3^{\text{rd}} \text{-ord.} \\ \text{CT}\Delta\Sigma \end{array}$	2 nd -ord. VCO
Technology [nm]	65	40	40	65	180	65	65
Area [mm ²]	0.08	0.025	0.135	0.078	0.5	0.113	0.075
Supply (A/D) [V]	1.2/0.7	0.8/0.6	1.2/0.45	1	1	1.2	1.2/0.8
Power [µW]	3.2	4.5	7	6.5	6.5	7.3	4.25/5.8
Coupling	ac	ac	ac	dc	ac	ac	ac
Input-range [mV _{pp}]	250	100	100	300	360	200	400
Sampling frequency [kHz]	32	2500	3	1280	12.8	400	200
BW [kHz]	0.5	10	0.2	10	0.3	5	1
CMRR [dB]	98	83	66	76	84	78	89
Input-referred noise $[nV/\sqrt{Hz}]$	53	36	367	95	265	90	110
SNDR [dB]	88.1	78.5	75.2 dB	80.4	84.3	78	92.3
DR [dB]	94.2	79	77.4 dB	80.4	84.3	81	92.3
SFDR [dB]	105.1	91	79	92.2	104.7	81	110.3
Z_{in} at DC [M Ω]	4	0.22	∞	∞	39	1500	60
Z_{in} at BW [MΩ]	4	0.22	8	13.3	39	19.6	50
FoM _{SNDR} [dB]	170	172	149.6	172.3	160.9	166.4	174.7

© 2021 IEEE International Solid-State Circuits Conference 28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Performance Summary

	J.Huang VLSI 2020	S.Li CICC 2020	W.Jiang JSSC 2017	C.Lee ISSCC 2020	J-S Bang VLSI 2018	H.Chandrakumar JSSC 2019	This work
Integration Domain	Time	Time	Time	Hybrid	Voltage	Voltage	Time
Topology	1 st -ord. VCO	1 st -ord. VCO	Open-loop VCO	2^{nd} -ord.	3^{rd} -ord. CT $\Delta\Sigma$	$CCIA + 3^{rd}$ -ord.	2 nd -ord. VCO
Technology [nm]	65	40	40	65	180	65	65
Area [mm ²]	0.08	0.025	0.135	0.078	0.5	0.113	0.075
Supply (A/D) [V]	1.2/0.7	0.8/0.6	1.2/0.45	1	1	1.2	1.2/0.8
Power [µW]	3.2	4.5	7	6.5	6.5	7.3	4.25/5.8
Coupling	ac	ac	ac	dc	ac	ac	ac
Input-range [mV _{pp}]	250	100	100	300	360	200	400
Sampling frequency [kHz]	32	2500	3	1280	12.8	400	200
BW [kHz]	0.5	10	0.2	10	0.3	5	1
CMRR [dB]	98	83	66	76	84	78	89
Input-referred noise $[nV/\sqrt{Hz}]$	53	36	367	95	265	90	110
SNDR [dB]	88.1	78.5	75.2 dB	80.4	84.3	78	92.3
DR [dB]	94.2	79	77.4 dB	80.4	84.3	81	92.3
SFDR [dB]	105.1	91	79	92.2	104.7	81	110.3
Z_{in} at DC [MΩ]	4	0.22	00	x	39	1500	60
Z _{in} at BW [MΩ]	4	0.22	8	13.3	39	19.6	50
FoM _{SNDR} [dB]	170	172	149.6	172.3	160.9	166.4	174.7

© 2021 IEEE International Solid-State Circuits Conference 28.4: A 400mVpp 92.3dB-SNDR 1kHz-BW 2nd-Order

VCO-Based ExG-to-Digital Front-End Using a Multiphase Gated-Inverted Ring-Oscillator Quantizer

Conclusion

We reported a 2nd-order VCO-based ExG front-end with high dynamic range and low power for motion artifact tolerance using a new GIRO quantizer with sign feedforward.

Key achievements:

- 2nd-order VCO-only ADC
- Wide input-range (400 mV_{pp}) and dynamic range (92.3 dB)
- Dynamic power consumption w/ input amplitude
- High input-impedance across the bandwidth of interest (>50 $M\Omega$)
- State-of-the-art linearity (**110.3 dB**) by using a GIRO-based quantizer
- State-of-the-art FoM (174.7 dB) using a power-efficient multiphase quantizer