A 400 MHz 4.5 nW –63.8 dBm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P. Mercier, and Drew A. Hall

University of California, San Diego

ESSCIRC 2017

Motivation

- □ The age of Internet of Everything (IoE)
 - 500 billion connected devices before 2030 [*Cisco, 2014*]
- □ Event-driven applications focuses on lifetime and range
 - Low power and high sensitivity are the main targets

Wake-up receiver (WuRX)

- □ For infrequent event-driven networks:
 - Always-ON WuRX extends system lifetime
 - WuRX sensitivity should be comparable with main RX

State-of-the-art WuRX comparison

Prior-art sub-µW WuRX compromises sensitivity for low power consumption

State-of-the-art nW WuRX

- □ Direct envelope detection architecture
- \Box 25 dB passive gain enabled by high R_{in} ED

State-of-the-art WuRX comparison

Q1: Could we use the same approach at a higher frequency?

Problem 1: high input capacitance ED

High C_{in} ED limits carrier frequency and passive gain

Problem 2: single-ended output ED

□ Needs extra reference circuit for comparator

- Extra tuning required for DC variation from PVT
- Reference circuit is an additional noise source

□ Q2: Could we eliminate the reference circuit?

- □ Transformer filter
 - 18.5 dB passive gain @ 402~405 MHz MICS band

□ Active pseudo-balun CG DTMOS envelope detector

- Single-ended input to pseudo-differential output
- Boosted SPI for super cut-off switches

- □ S/H stage and 2-stage comparator
 - S/H stage solves asymmetric comparator kickback at \emptyset_2

- □ Digital correlator
 - 2× oversampling overcomes clock asynchronization
 - 4 dB coding gain

Maximizing passive voltage gain

Maximizing passive voltage gain

Equivalent parallel resistance of L_{s}

$$\Box A_{\rm V} \approx \sqrt{R_{\rm EQ,P} ||R_{\rm chip}/R_{\rm S}} \Longrightarrow$$

Requires high-Q passives and a large chip input impedance

E.g.: Assuming $R_{chip} \rightarrow \infty$, 25 dB gain from 50 Ω requires $R_{EQ,P} = \underline{16 \ k\Omega}$

Maximizing passive voltage gain

$$\square R_{\rm EQ,P} = {^Q}/_{\omega_{\rm RF}(C_{\rm S}+C_{\rm chip})} \implies A_{\rm V} \propto \sqrt{\frac{1}{f_{\rm RF}(C_{\rm S}+C_{\rm chip})}}$$

• **Objective:** under given f_{RF} , minimize $(C_S + C_{chip})$ to maximize L_S and therefore passive voltage gain

Active envelope detector: prior-art

If \mathbb{I} High R_{in} supports high transformer passive gain

- Subthreshold biasing for large 2nd order non-linearity
- \checkmark DTMOS configuration provides 16% more g_{m2}
- \boxtimes High C_{in} limits frequency and achievable passive gain

Common Source vs. Common Gate ED

- \Box Common gate input eliminates C_{qd} and C_{bd}
 - Saves 47.5% C_{in} based on simulation
- Extra freedom on bulk bias voltage and V_{th} is tunable
 DTMOS advantage retained (16% extra g_{m2})

Proposed pseudo-balun ED schematic

Board and die photo

- □ GF 180 nm CMOS SOI process
- □ RO4003 substrate

Measurement results

Input S₁₁ well matched across MICS band
 ED pseudo-differential output waveforms

Measurement results

□ -63.8 dBm sensitivity for MDR≤10⁻³
 □ >-20 dBm CW and >-50 dBm PRBS jammers could be tolerated @ 50 MHz offset w/o false alarm

Comparison to the state-of-the-art

	RFIC'12	ISSCC'16	ISSCC'17	CICC'13	This work
Technology	130 nm	65 nm	180 nm	130 nm	180 nm
Supply	1.2 V	1 / 0.5 V	0.4 V	1.2 / 0.5 V	0.4 V
Data Rate	100 kbps	8.192 kbps	0.3 kbps	12.5 kbps	0.3 kbps
Passive Gain	12 dB	N/A	25 dB	5 dB	18.5 dB
ED Type	Active CS single-ended	Passive Dickson single-ended	Active CS single-ended	Passive Dickson single-ended	Active CG pseudo-balun
ED Power	23 nW	0	2.1 nW	0	1.8 nW
ED R _{in} @ RF	505.6 Ω	N/A	10 kΩ	76.3 Ω	30 kΩ
k _{ED} (1/V)	112.2	N/A	180.8	N/A	301.2
k _{ED} /P _{ED} (1/V·nW)	4.9	N/A	86.1	N/A	167.3
Comp. Ref.	ED replica	RC LPF	Ref. ladder	N/A	None
Carrier Freq.	915 MHz	2.4 GHz	113.5 MHz	403 MHz	405 MHz
Sensitivity	-41 dBm	-56.5 dBm	-69 dBm	-45 dBm	–63.8 dBm
RX Power	98 nW	236 nW	4.5 nW	116 nW	4.5 nW

Comparison to WuRXs (f_{RF} >400 MHz)

FoM (dB)=-P_{SEN,norm}-10log(P_{DC}/1mW)
 Best FoM among direct-ED based WuRXs

Comparison to WuRXs (f_{RF} >400 MHz)

Some mixer-based WuRXs have better FoM, albeit at much higher DC power

Conclusions

- For event-driven applications with low-average throughput, WuRXs extend system lifetime
 - Design targets: Low power and high sensitivity
- □ The proposed design breaks the trade-off between sensitivity and carrier frequency by using:
 - Active ED with CG input to reduce input capacitance
 - Current-reuse pseudo-balun ED to improve 1.5 dB sensitivity without a power penalty

\Box Result:

A 400 MHz, 4.5 nW, -63.8 dBm sensitivity WuRX

- □ This work is supported by the Defence Advanced Research Projects Agency (DARPA) under contract No. HR0011-15-C-0134
- Mentor Graphics for the use of Analog FastSPICE tool (AFS)

