A 4.5nW Wake-Up Radio with -69dBm Sensitivity

Haowei Jiang, Po-Han Peter Wang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Drew A. Hall, Patrick P. Mercier

University of California, San Diego, La Jolla, CA, USA

Motivation: IoT Devices IoT devices: OFF (zero power) but ALERT! Courtesy of Dr. Troy Olsson (DARPA) Savings From Conventional ~ 1 Month ~ 24 Month **Periodic Wake-up** Wake-Up RX Power Device Power Device Lifetime Lifetime 95% Average Average WuRX Tx. Data Rx. Data Tx Data Rx. Data 6Mb/Day 12MB/Day 6Mb/Day 12MB/Day Example Radio w/ WuRX **Example Radio**

- Always-on \rightarrow near-zero power
- Large network coverage \rightarrow high sensitivity
- Infrequent event-driven manner \rightarrow data rate less critical

Near-zero power WuRX greatly extends IoT system lifetime

Conventional WuRX Architectures

IF/uncertain-IF:

Direct envelope detection:

Problem:

Moderate RF/conversion gain

- \rightarrow poor sensitivity
- Low-Q front-end
- \rightarrow poor interferer tolerance

Challenge: achieving both high gain and low power

System Overview

High *R*_{in} ED supports high passive gain front-end w/ high-*Q* filtering at low power

© 2017 IEEE International Solid-State Circuits Conference

Transformer Filter

 \rightarrow 25dB gain \rightarrow 1:316 impedance transformation ratio

Requirements:

- 1. High ED *R_{in}* (>15.8kΩ)
- 2. Large L_s/L_p ratio (=316)
- 3. Small, well-controlled $k (\leq 0.04)$

Implementation options:

- 1. Lumped L_p/L_s
 - \rightarrow Large *L*, but poor-defined *k*
- 2. Distributed L_p/L_s
 - \rightarrow Well-controlled k, but small L

<u>Challenge</u>: implement large *L*_p/*L*_s ratio with low and well-controlled *k*

Transformer Filter Schematic of Transformer Filter Coupled Inductors Chip Antenna bondwire k=0.04 ത്ത 000 C_P = $\pm C_s$ -C_{chip} R_{chip} L₂ĝ Se L 3-D Model of Transformer Filter Coilcraft Coilcraf Inductor Inductor " Port : Distributed L_s: Lumped+Distributed To Chip **Defected** Ground Realize large L with well-controlled k **Distributed Coupling Region** Distributed Lumped

Discrete inductors + stripline inductor control k precisely

© 2017 IEEE International Solid-State Circuits Conference

Transformer Filter

© 2017 IEEE International Solid-State Circuits Conference

Benefit:

Active ED has high input impedance to support high RF gain 2^{nd} order g_m non-linearity realizes the ED squaring-function

Envelope Detector (ED)

Active-L ED bias improves SNR by 3dB/25dB

© 2017 IEEE International Solid-State Circuits Conference

Comparator

Unbalanced impedances (ED vs. reference ladder) at comparator input

Challenge: Asymmetric kickback and unequal settling time

© 2017 IEEE International Solid-State Circuits Conference

Comparator

S&H: balanced impedances & stores kickback charge temporarily Reset transistor: Purge kickback charge before next cycle

© 2017 IEEE International Solid-State Circuits Conference

Comparator

• DTMOS increases $g_m + g_{mb}$ by 51% and reduce noise by 66%

Early-reset: save dynamic power & generate non-overlap clock

Coding and Digital Baseband

□ 16b code scheme: □ 32b digital correlator □ Output driver

• 2× oversampling

Optimal codeword improves 4dB SNR at low power cost

Die & Board Photo

Measurement Results

Measurement Results

© 2017 IEEE International Solid-State Circuits Conference

Conclusions

- Infrequent event-driven networks with low-average throughputs can benefit from low-data rate WuRXs
- Key challenges: <u>power</u> and <u>sensitivity</u>
- To address this we:
 - Designed a transformer filter with 25 dB passive gain and 1.9MHz bandwidth at 113.5MHz
 - Designed an active-L biased ED with high input impedance
 Designed a dynamic comparator with low noise/kickback
 - Proposed an optimal coding design which provides 4dB sensitivity gain at low power cost
- Result: a 4.5nW 0.4V WuRX with -69 dB sensitivity

Acknowledgements

- The material is based on work supported by the Defence Advanced Research Projects Agency (DARPA) under contract No. HR0011-15-C-0134
- Thank Mentor Graphics for the use of Analog FastSPICE tool (AFS)