A 4.4µW 2.5kHz-BW 92.1dB-SNDR 3rd-Order VCO-based ADC with Pseudo Virtual Ground Feedforward Linearization

Corentin Pochet and Drew A. Hall

University of California San Diego (UCSD)

Short Bio – Corentin Pochet

B.Sc. & M.Sc.

Université Libre de Bruxelles

2011 - 2016 Electrical Engineering

University of California San Diego

Electrical Engineering, Advisor: Drew Hall

Mixed-signal intern Qualcomm, San Diego

Summer 2021

Awards

2016 - Now

Ph.D.

Henri Benedictus BAEF Fellow

Research focus

Low-power sensor front-ends and time-based ADCs

ADC for Internet of Things (IoT)

Smart distributed sensors require:

- 1. Low-power system (<100 μW)
- 2. High accuracy front-end (SNR>90 dB)
- 3. Edge processing

ADC for Internet of Things (IoT)

Smart distributed sensors require:

- 1. Low-power system (<100 μW)
- 2. High accuracy front-end (SNR>90 dB)
- 3. Edge processing

Edge processing → Highly digital systems

- Best implemented in advanced nodes
- Complicates design of the front-end circuit
 - Lower supplies, lower intrinsic gain, ...

ADC for Internet of Things (IoT)

Smart distributed sensors require:

- 1. Low-power system (<100 μW)
- 2. High accuracy front-end (SNR>90 dB)
- 3. Edge processing

Edge processing \rightarrow Highly digital systems

- Best implemented in advanced nodes
- Complicates design of the front-end circuit
 - Lower supplies, lower intrinsic gain, ...

Need innovative architectures for high-precision ADCs

VCO-based ADCs

Pros:

- Continuous-time ΔΣ
- Open-loop noise-shaping
- High scalability with process

VCO-based ADCs

Pros:

- Continuous-time ΔΣ
- Open-loop noise-shaping
- High scalability with process

© 2022 IEEE International Solid-State Circuits Conference 25.1 A 4.4µW 2.5kHz-BW 92.1dB-SNDR 3rd-Order VCO-Based ADC with Pseudo Virtual Ground Feedforward Linearization

VCO-based ADCs

Pros:

- Continuous-time ΔΣ
- Open-loop noise-shaping
- High scalability with process

Cons:

- Very non-linear
- PVT dependent gain
 - Limited to 1st-order noise-shaping

© 2022 IEEE International Solid-State Circuits Conference 25.1 A 4.4µW 2.5kHz-BW 92.1dB-SNDR 3rd-Order VCO-Based ADC with Pseudo Virtual Ground Feedforward Linearization

Outline

Motivation

Prior Work

- Pseudo Virtual Ground Feedforwarding Concept
- Proposed 3rd-order VCO-based ADC
- Circuit Implementation
- Measurement Results
- Conclusion

Prior VCO-based ADCs

Open-loop [Jiang ISSCC '16]

✓ Highly digital

- × Limited input range (<100 mV_{pp})
- × Limited to 1st-order noise shaping (NS)

Closed-loop [Li C/CC '19]

- ✓ Good linearity
- × Limited input range (<500 mV_{pp})
- × Limited to 1st-order NS

Prior VCO-based ADCs

DPCM-based correction [Huang ISSCC '21] **2nd-ord. VCO-only** [Pochet ISSCC '21]

- ✓ Excellent linearity (>120 dB)
- × Large DAC (8b)
- × Limited to 1st-order NS

- ✓ Great linearity (>110 dB)
- ✓ 2nd-order NS
- × Sensitive to path mismatch

How to improve VCO-based ADCs?

Prior-art performance primarily limited by:

- 1. Input swing (< 500 mV_{pp})
- 2. Noise-shaping (< 2)
- 3. PVT sensitivity

How to improve VCO-based ADCs?

Prior-art performance primarily limited by:

- 1. Input swing (< 500 mV_{pp})
- 2. Noise-shaping (< 2)
- 3. PVT sensitivity

We propose an architecture that:

- 1. Allows for large input-swing (>1.5 V_{pp})
- 2. Enables higher order noise-shaping (3)
- 3. Is reliable across PVT

ADC specs: >90 dB SNDR, 2.5 kHz BW, and 3rd-order NS

Outline

Motivation

Prior Work

Pseudo Virtual Ground Feedforwarding Concept

■ Proposed 3rd-order VCO-based ADC

- Circuit Implementation
- Measurement Results

Conclusion

Standard CIFB Architecture

3rd-ord. CIFB architecture:

- ✓ Higher order noise shaping
- ✓ Good anti-aliasing

Standard CIFB Architecture

3rd-ord. CIFB architecture:

- ✓ Higher order noise shaping
- ✓ Good anti-aliasing
- × Limited coefficient scaling
- × Tonal integrator output

CIFB w/ Input Feedforwarding (FF)

Key idea: FF path cancels DAC output → Integrator is free of input

- ✓ Reduces SQNR degradation
- ✓ Improves coefficient scaling

© 2022 IEEE International Solid-State Circuits Conference 25.1 A 4.4µW 2.5kHz-BW 92.1dB-SNDR 3rd-Order VCO-Based ADC with Pseudo Virtual Ground Feedforward Linearization

CIFB w/ Input Feedforwarding (FF)

- Key idea: FF path cancels DAC output \rightarrow Integrator is free of input
- ✓ Reduces SQNR degradation
- ✓ Improves coefficient scaling
- × Reduces anti-aliasing
- × Stringent FF path linearity

CIFB w/ Input Feedforwarding (FF)

- Key idea: FF path cancels DAC output \rightarrow Integrator is free of input
- ✓ Reduces SQNR degradation
- ✓ Improves coefficient scaling
- × Reduces anti-aliasing
- × Stringent FF path linearity

Observation:

Both DAC nodes perform input signal cancellation

Pseudo Virtual Ground (PVG) FF

- Key idea: Feedforward result of input and DAC cancellation
- ✓ Reduces SQNR degradation
- ✓ Improves coefficient scaling
- ✓ Relaxes feedforward path linearity
- ✓ Removes feedback DAC

Outline

- Motivation
- Prior Work
- Pseudo Virtual Ground Feedforwarding Concept

■ Proposed 3rd-order VCO-based ADC

- Circuit Implementation
- Measurement Results

Conclusion

Coefficient Selection

Filter parameters:

Loop-filter order: 3 Oversampling ratio (OSR): 80 Out-of-band gain (OBG): **?**

Coefficient Selection

Filter parameters:

Loop-filter order: 3 Oversampling ratio (OSR): 80 Out-of-band gain (OBG): **2.5**

Loop coefficients obtained from the CT mapping of the DT loopfilter

Architecture Mapping

Block diagram mapping:

- Integrators mapped to G_m-CCO integrator with PFD phase detector driving a current pulser
- FF path implemented in the current domain with G_m-cells
- Coefficients scaled to guarantee $\Delta \phi < 2\pi$ between CCOs

25.1 A 4.4µW 2.5kHz-BW 92.1dB-SNDR 3rd-Order VCO-Based ADC with Pseudo Virtual Ground Feedforward Linearization

High DR 3rd-order VCO-only ADC

Outline

- Motivation
- Prior Works
- Pseudo Virtual Ground Feedforwarding Concept
- Proposed 3rd-order VCO-based ADC
- Circuit Implementation
- Measurement Results
- Conclusion

G_m-cell source degenerated for increased linearity

G_m-cell source degenerated for increased linearity

• Differential pair for maximum current reuse

G_m-cell source degenerated for increased linearity

- Differential pair for maximum current reuse
- Thick oxide devices for low gate leakage

G_m-cell source degenerated for increased linearity

- Differential pair for maximum current reuse
- Thick oxide devices for low gate leakage
- Pseudo-resistor biasing

Chopping improves CMRR and upmodulates offset and flicker noise

• CDAC chopping \rightarrow differential-mode chopping artifacts

Chopping improves CMRR and upmodulates offset and flicker noise

- CDAC chopping → differential-mode chopping artifacts
- Dead-band switch converts artifacts to common-mode

2nd & 3rd G_m-cell Implementation

G_m-cell composed of feedforward and current pulser

- Differential pair with $g_{\rm m}/I_{\rm D}$ > 20
- *G*_m-cell current chopped down to match path polarity
- Current domain path summation directly into the CCO

2nd & 3rd G_m-cell Implementation

Current pulser implementation suffers from:

- Slow settling time due $V_{DS} = 0$ at turn-on time
- Large V_{DS} across the switch when off causes leakage

2nd & 3rd G_m-cell Implementation

Current shunted to a CCO replica solves the issues:

- Fast settling due to constant current source V_{DS}
- Low leakage due to near-zero switch V_{DS} in the off state

Outline

- Motivation
- Prior Work
- Pseudo Virtual Ground Feedforwarding Concept
- Proposed 3rd-order VCO-based ADC
- Circuit Implementation
- Measurement Results
- Conclusion

Chip Micrograph & Power Breakdown

Measured Spectrum

High SNDR (>90dB) and SFDR (>120dB)

Measured Dynamic Range

Supply sensitivity measurement

1. Supply voltage was varied from 0.7V to 1V

Supply sensitivity measurement

- 1. Supply voltage was varied from 0.7 V to 1 V
- 2. 100 m V_{pp} sinusoid on supply to test PSRR

CMRR measurement

Full swing common-mode input was used to characterize the CMRR

CMRR > 87 dB in 2.5 kHz bandwidth

Performance Across Dies

25.1 A 4.4µW 2.5kHz-BW 92.1dB-SNDR 3rd-Order VCO-Based ADC with Pseudo Virtual Ground Feedforward Linearization

	H. Chandrakumar	S. Lee	C. Lee	S. Li	J. Huang	C. Pochet	This work
	ISSCC 2018	VLSI 2021	ISSCC 2020	CICC 2019	ISSCC 2021	ISSCC 2021	
Integration domain	Voltage	Voltage	Hybrid	Time	Time	Time	Time
Topology	3^{rd} -ord.	3 rd -ord.	2^{nd} -ord.	1 st -ord.	1 st -ord.	2^{nd} -ord.	3 rd -ord.
Technology [nm]	65	28	65	40	65	65	65
Area [mm ²]	0.113	0.12	0.078	0.025	0.075	0.075	0.1
Supply (A/D) [V]	1.2	0.6	1	0.8/0.6	0.8	1.2/0.8	0.8
Power [µW]	4.5	33.6	6.5	4.5	1.68	5.8	4.4
DAC type	Capacitive	Resistive	Resistive	Capacitive	Capacitive	Capacitive	Capacitive
Input range [V _{pp}]	1.77	0.8	0.3	0.1	0.46	0.4	1.8
Sampling freq. [kHz]	400	12800	1280	2500	64	200	400
BW [kHz]	5	40	10	10	0.5	1	2.5
CMRR [dB]	N/A	55	76	83	97	89	80-93
SNDR [dB]	93.5	83	80.4	78.5	94.2	92.3	92.1
DR [dB]	96.5	86.5	80.4	79	95.1	92.3	92.1
SFDR [dB]	101.4	94.2	92.2	91	128	110.3	123.2
L J	101.4	74.2	12.2	71	120	110.5	120.2

	H. Chandrakumar	S. Lee	C. Lee	S. Li	J. Huang	C. Pochet	This work
	ISSCC 2018	VLSI 2021	ISSCC 2020	CICC 2019	ISSCC 2021	ISSCC 2021	
Integration domain	Voltage	Voltage	Hybrid	Time	Time	Time	Time
Topology	3 rd -ord.	3 rd -ord.	2^{nd} -ord.	1 st -ord.	1 st -ord.	2^{nd} -ord.	3 rd -ord.
Technology [nm]	65	28	65	40	65	65	65
Area [mm ²]	0.113	0.12	0.078	0.025	0.075	0.075	0.1
Supply (A/D) [V]	1.2	0.6	1	0.8/0.6	0.8	1.2/0.8	0.8
Power [µW]	4.5	33.6	6.5	4.5	1.68	5.8	4.4
DAC type	Capacitive	Resistive	Resistive	Capacitive	Capacitive	Capacitive	Capacitive
Input range [V _{pp}]	1.77	0.8	0.3	0.1	0.46	0.4	1.8
Sampling freq. [kHz]	400	12800	1280	2500	64	200	400
BW [kHz]	5	40	10	10	0.5	1	2.5
CMRR [dB]	N/A	55	76	83	97	89	80-93
SNDR [dB]	93.5	83	80.4	78.5	94.2	92.3	92.1
DR [dB]	96.5	86.5	80.4	79	95.1	92.3	92.1
SFDR [dB]	101.4	94.2	92.2	91	128	110.3	123.2
FoM _{SNDR} [dB]	184	173.8	172.3	172	178.9	174.7	179.6

	H. Chandrakumar ISSCC	S. Lee VLSI	C. Lee ISSCC	S. Li CICC	J. Huang	C. Pochet	This work
	2018	2021	2020	2019	2021	2021	
Integration domain	Voltage	Voltage	Hybrid	Time	Time	Time	Time
Topology	3^{rd} -ord.	3 rd -ord.	2^{nd} -ord.	1^{st} -ord.	1^{st} -ord.	2^{nd} -ord.	3 rd -ord.
Technology [nm]	65	28	65	40	65	65	65
Area [mm ²]	0.113	0.12	0.078	0.025	0.075	0.075	0.1
Supply (A/D) [V]	1.2	0.6	1	0.8/0.6	0.8	1.2/0.8	0.8
Power [µW]	4.5	33.6	6.5	4.5	1.68	5.8	4.4
DAC type	Canacitive	Resistive	Resistive	Canacitiva	Canacitive	Canacitive	Canacitive
71	Capacitive	Resistive	Resistive	Capacitive	Capacitive	Capacitive	Capacitive
Input range [V _{pp}]	1.77	0.8	0.3	0.1	0.46	0.4	1.8
Input range [V _{pp}] Sampling freq. [kHz]	1.77 400	0.8 12800	0.3 1280	0.1 2500	0.46 64	0.4 200	1.8 400
Input range [V _{pp}] Sampling freq. [kHz] BW [kHz]	1.77 400 5	0.8 12800 40	0.3 1280 10	0.1 2500 10	0.46 64 0.5	0.4 200 1	1.8 400 2.5
Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB]	1.77 400 5 N/A	0.8 12800 40 55	0.3 1280 10 76	0.1 2500 10 83	0.46 64 0.5 97	0.4 200 1 89	1.8 400 2.5 80-93
Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB] SNDR [dB]	1.77 400 5 N/A 93.5	0.8 12800 40 55 83	0.3 1280 10 76 80.4	0.1 2500 10 83 78.5	0.46 64 0.5 97 94.2	0.4 200 1 89 92.3	1.8 400 2.5 80-93 92.1
Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB] SNDR [dB] DR [dB]	1.77 400 5 N/A 93.5 96.5	0.8 12800 40 55 83 86.5	0.3 1280 10 76 80.4 80.4	0.1 2500 10 83 78.5 79	0.46 64 0.5 97 94.2 95.1	0.4 200 1 89 92.3 92.3	1.8 400 2.5 80-93 92.1 92.1
Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB] SNDR [dB] DR [dB] SFDR [dB]	1.77 400 5 N/A 93.5 96.5 101.4	0.8 12800 40 55 83 86.5 94.2	0.3 1280 10 76 80.4 80.4 92.2	0.1 2500 10 83 78.5 79 91	0.46 64 0.5 97 94.2 95.1 128	0.4 200 1 89 92.3 92.3 110.3	1.8 400 2.5 80-93 92.1 92.1 123.2

	H. Chandrakumar	S. Lee	C. Lee	S. Li	J. Huang	C. Pochet	This work
	ISSCC 2018	VLSI 2021	ISSCC 2020	CICC 2019	ISSCC 2021	ISSCC 2021	
Integration domain	Voltage	Voltage	Hybrid	Time	Time	Time	Time
Topology	3 rd -ord.	3^{rd} -ord.	2^{nd} -ord.	1 st -ord.	1 st -ord.	2^{nd} -ord.	3 rd -ord.
Technology [nm]	65	28	65	40	65	65	65
Area [mm ²]	0.113	0.12	0.078	0.025	0.075	0.075	0.1
Supply (A/D) [V]	1.2	0.6	1	0.8/0.6	0.8	1.2/0.8	0.8
Power [µW]	4.5	33.6	6.5	4.5	1.68	5.8	4.4
DAC type	Capacitive	Resistive	Resistive	Capacitive	Capacitive	Capacitive	Capacitive
DAC type Input range [V _{pp}]	Capacitive 1.77	Resistive 0.8	Resistive 0.3	Capacitive 0.1	Capacitive 0.46	Capacitive 0.4	Capacitive 1.8
DAC type Input range [V _{pp}] Sampling freq. [kHz]	Capacitive 1.77 400	Resistive0.812800	Resistive 0.3 1280	Capacitive 0.1 2500	Capacitive 0.46 64	Capacitive 0.4 200	Capacitive 1.8 400
DAC type Input range [V _{pp}] Sampling freq. [kHz] BW [kHz]	Capacitive 1.77 400 5	Resistive 0.8 12800 40	Resistive 0.3 1280 10	Capacitive 0.1 2500 10	Capacitive 0.46 64 0.5	Capacitive 0.4 200 1	Capacitive 1.8 400 2.5
DAC type Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB]	Capacitive 1.77 400 5 N/A	Resistive 0.8 12800 40 55	Resistive 0.3 1280 10 76	Capacitive 0.1 2500 10 83	Capacitive 0.46 64 0.5 97	Capacitive 0.4 200 1 89	Capacitive 1.8 400 2.5 80-93
DAC type Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB] SNDR [dB]	Capacitive 1.77 400 5 N/A 93.5	Resistive 0.8 12800 40 55 83	Resistive 0.3 1280 10 76 80.4	Capacitive 0.1 2500 10 83 78.5	Capacitive 0.46 64 0.5 97 94.2	Capacitive 0.4 200 1 89 92.3	Capacitive 1.8 400 2.5 80-93 92.1
DAC type Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB] SNDR [dB] DR [dB]	Capacitive 1.77 400 5 N/A 93.5 96.5	Resistive 0.8 12800 40 55 83 86.5	Resistive 0.3 1280 10 76 80.4 80.4	Capacitive 0.1 2500 10 83 78.5 79	Capacitive 0.46 64 0.5 97 94.2 95.1	Capacitive 0.4 200 1 89 92.3 92.3	Capacitive 1.8 400 2.5 80-93 92.1 92.1
DAC type Input range [V _{pp}] Sampling freq. [kHz] BW [kHz] CMRR [dB] SNDR [dB] DR [dB] SFDR [dB]	Capacitive 1.77 400 5 N/A 93.5 96.5 101.4	Resistive 0.8 12800 40 55 83 86.5 94.2	Resistive 0.3 1280 10 76 80.4 92.2	Capacitive 0.1 2500 10 83 78.5 79 91	Capacitive 0.46 64 0.5 97 94.2 95.1 128	Capacitive 0.4 200 1 89 92.3 92.3 110.3	Capacitive 1.8 400 2.5 80-93 92.1 92.1 123.2

Comparison to the State-of-the-Art

[[]B. Murmann, "ADC Performance Survey 1997-2021"]

Highest FoM among VCO-based ADCs

Conclusion

Demonstrated a new technique enabling a higher-order VCO-based ADC with high linearity and dynamic range

Key innovations:

- Pseudo virtual ground FF enabling 3rd-order NS and SFDR>120dB
- Digital friendly architecture using only VCO integrators
- Excellent CMRR and PSRR
- State-of-the-art Schreier FoM among VCO-based ADCs

Acknowledgments

This work was supported by Synic and the Korea Electronics Technology Institute (KETI).

Thank You!