

IEEE Custom Integrated Circuits Conference

27-3: A 2.5-20kSps In-Pixel Direct Digitization **Front-End for ECoG with In-Stimulation Recording**

Aditi Jain¹, Eric Fogleman¹, Paul Botros², Ritwik Vatsyayan¹, Corentin Pochet³, Andrew Bourhis¹, Zhaoyi Liu¹, Suhas Chethan¹, Hanh-Phuc Le¹, Ian Galton¹, Shadi Dayeh¹, and Drew A. Hall¹ ¹UCSD, San Diego, USA, ²Chronosphere, New York, USA, ³Apple, Munich, Germany

April 24th, 2024

Closed-Loop Neuromodulation

- Real-time neural feedback guides stimulation
- Improves treatment for movement disorders, pain, and epilepsy
- High spatial and temporal resolution, low-noise neural recording

Closed-loop neuromodulation improves therapy with precision and adaptability

Closed-Loop Neuromodulation: Stimulation Artifacts

Stimulation artifacts complicate signal acquisition:

- Unpredictable shape, strength and duration
- Loss of neural data
- Long AFE recovery time

Stimulation artifacts can result in critical neural data loss in closed-loop neuromodulation

PGA + Shared ADC (Yoon VLSI'21)

✓ High input impedance

- × Saturation, slow settling, signal loss from artifacts
- × Explicit anti-aliasing filter

PGA + Shared ADC (Yoon VLSI'21)

✓ DC electrode offset elimination ⇒ Low HPF corner

× Fundamental tradeoff with recovery time ⇒ slow settling
 × Loss of neural data

PGA + Shared ADC saturates and recovers slowly from artifacts

Per-pixel Direct Digitization (Pochet ISSCC'22)

✓ Higher DR to absorb DC electrode offset and artifacts

✓ Inherent anti-aliasing

Per-pixel Direct Digitization (Pochet ISSCC'22)

✓ Modulator instability/slow recovery from artifacts <u>beyond input range</u>

× Low input impedance

2nd-order $\Delta\Sigma$ ADC with the sub-ms artifact recovery time and power-efficient bandwidth scaling is proposed

滬 CICC

Outline

- Introduction
- System-level architecture
- Proposed solution for artifact recovery
- Circuit implementation
- Measurement results

G_{m,1} = 95 μS C_I = 9 pF G_{m,2} = 0.64 μS K_{CCO} = 27 MHz/μA G_{m,3} = 9.5 μS

 $C_{\text{DACu}} = 3.2 \text{ fF}$ $C_{\text{in}} = 660 \text{ fF}$

1. Noise-efficient Gm-C filter

- Chopping ⇒ Reduce flicker noise
- Complementary input stage ⇒ Higher noise efficiency

2. <u>Pseudo-virtual ground feedforward path</u>

- Requires single feedback DAC for a 2nd order CIFB modulator ⇒ Saves area
- 1st integrator is free of input ⇒ Higher linearity

- 3. Per-pixel Decimator
 - Reduces the datalink power
 - 3rd-order CIC filter ⇒ Stronger anti-aliasing rejection than PGA + shared ADC

4. Less-sensitive Dead Band (DB) switch

- Shifted to less-sensitive nodes ⇒ 1st-order noise-shaped
- > 10× smaller switch size ⇒ Reduces charge injection errors
- Anti-aliasing of CTDSM reduces to -21 dB at f_s due to FF path and DB switch

5. Power-efficient bandwidth scaling

- Neural signals categorized by frequency band ⇒ require power-scalable AFE based on mode
- Supports four modes (2.5–20kSps) via power efficient bandwidth-scalable CTDSM

- 6. Fast-recovery overrange correction
 - Sub-ms recovery time from stimulation artifacts
 - Avoids modulator instability

Outline

- Introduction
- System-level architecture
- Proposed solution for artifact recovery
- Circuit implementation
- Measurement results

Conventional \phi Quantizer

Highly variable (in amplitude) artifacts can over-range ADC

Conventional \phi Quantizer

- Large errors fed into ADC during phase wrapping for input ≥ FS
- 2nd integrator rollover ⇒ modulator instability
- Modulator fails to recover without reset after input returns to normal

Modulator instability/slow recovery from artifacts, which overrange the ADC

Proposed \$ Quantizer

- Add a bit and reset the counters: Prevents modulator oscillation but offers lower DR than voltage quantizer DSM
- Add second bit:

First bit extends the DR through saturation, followed by second bit to reset

Proposed \$ Quantizer

Minimize asynchronous sampling errors

- DFF-only counter which directly "counts" in gray code
- Additional bits require negligible (<10 %) extra power

Proposed \$ Quantizer

- Phase wraps never fed into modulator loop
- Extends usable DR
- Negligible power overhead

Artifact recovery is nearly instantaneous, delay determined by decimation filter

Outline

- Introduction
- System-level architecture
- Proposed solution for artifact recovery
- Circuit implementation
- Measurement results

G_m-**C** Implementation

- Transconductance-based 1st stage coefficient scaling
 - Four parallel *G*_m branches with drive strength ratios 1:1:2:4
 - Maintain ~constant input capacitance
 ⇒ Constant ~SNR due to input capacitive attenuation across modes
 - Power-efficient

G_m-**C** Implementation

- Dual-tail, complementary-input transconductor
 - High noise-efficiency
 - Medium V_t devices ⇒ powerefficiency

G_m-**C** Implementation

- C_I composed of NMOS varactors
 - Save 4× area over MIM or MOM caps
 - Anti-parallel connection ⇒ cancels even-order nonlinearity
- Triode-based common-mode feedback (CMFB)

2nd G_m cell and FF path Implementation

- 2nd Gm : FF Gm ~ 1 : 15
- ~50% current bled off \Rightarrow reduce $f_{CCO} \Rightarrow$ save digital power of ϕ quantizer

CCO Implementation

- CCO-based 2nd stage coefficient scaling
 - Saves 2–8× power compared to frequency divider-based scaling
 - Pseudo-differential NMOS cross-coupled delay cell ⇒ noise efficiency

Level Shifter Implementation

- Low latency to reduce signal-dependent loop delay
 - Reduce latch delay due to its signal dependency
 - Decouples the Nmos and Pmos driver with AC coupling
 - Reduces large delay from contention between pull-down and pull-up transistors in a conventional latch

Tan, S. C., and X. W. Sun. "Low power CMOS level shifters by bootstrapping technique." *Electronics letters* 38.16 (2002)

Outline

- Introduction
- System-level architecture
- Proposed solution for artifact recovery
- Circuit implementation
- Measurement results

Die Micrograph

Chip designed in 180 nm with 0.09 mm²/pixel

Power and Area Breakdown

Power/Channel breakdown - BW 10 kHz

Measured Spectrum

SNDR vs Input Amplitude

Input-referred noise

Crosstalk

Artifact Recovery

Artifact recovery is nearly instantaneous, delay determined by decimation filter

in-vivo: Measurement setup

in-vivo: Whisker Airpuff Neural Recording

Measurement setup

in-vivo: Whisker Airpuff + Stimulation Neural Recordings

Measurement setup

Monopolar stimulation @ 100 Hz with 500 µA (first three pulses shown)

Performance Summary

Parameter	RHD 2164	Lopez TBCAS'17	Yoon VLSI'21	C Lee ISSCC'22	Wendl. ISSCC'21	X Yang VLSI'22	This work	
Тороlogy	PGA + shared ADC			CT-DSM			CT-DSM	
Input-type	Cap.	Cap.	Сар.	G _m	G _m	Cap.	Chopped Cap.	
Technology [nm]	500	130	65	180	180	22	180	
Supply (A/D) [V]	3.3	1.8/1.2	2.5	1	1.8	0.8	0.9/0.7	
# Channels	64	384	1024	4	8-24	128	8	
Input FS [mV _{pp}]	10	5	4.87	300	7	21.5	125	
BW [kHz]	20	10	10	10	10	10	1.25	10
Power/channel [µW]	830	49	2.72	8.6	-	3.67	3.2	11.7
Power/channel with decimator [µW]	-	-	-	-	8.59	6.02	3.5	14
FoM _{SNDR} [dB]***	137	-	162.4	178.1	147	157.2	163*	166*
SFDR [dB]	-	-	-	94.2	62	59.49	97	97.7
IRN [µV _{rms}]	2.4	6.36	8.98	6.6	4.37	7.71	5.9*	6*
Z _{IN} at DC [MΩ]	∞	∞	∞	∞	∞	∞	304	38
CMRR [dB]	82	>60	92	76	-	-	80	
Crosstalk [dBc]	-	58	>60	-	72	-	>60	
Stim. Artifact Tolerance	No			Yes	No		Yes	
Recovery Time [ms]	>> 100			_**	-	-	0.4	0.05

* Averaged over 12 chips

**Unusable beyond input range

***Schreier FoM [dB] = SNDR + 10log₁₀(BW/Power)

Conclusion

Designed a 4×2 array of per-pixel, power-scalable 2^{nd} order $\Delta\Sigma$ ADCs for ECoG with in-stimulation recording

Key features:

- Fastest (sub-ms) artifact recovery time through overrange detecting phase quantizer
- Enables in-stimulation recording by avoiding modulator instability
- Power-efficient bandwidth scalable CTDSM tailored for different neural signal frequency bands (2.5-20 kSps)
- Supported by *in vivo* data and comparison with commercial part Intan RHD2164

Acknowledgements

This work was supported by National Institutes of Health (UG3NS123723).

Thank You!

