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Abstract— Neural stimulation is used routinely to diagnose
and treat neurological disorders. The stimulation artifacts are,
however, problematic for closed-loop neuromodulation therapy,
which dynamically adjusts the electrical stimulation parameters
based on real-time feedback from the recorded neural activity
because they can cause saturation or prolonged recovery times in
traditional recording front ends. This article presents a per-pixel
second-order 16 analog-to-digital converter (ADC) for direct
digitization of neural signals, which addresses the stimulation
artifact recovery time in voltage-controlled oscillator (VCO)-
based quantizers with a fast-recovery, overrange-detecting phase
quantizer. The ADC uses a pseudo-virtual ground feedforwarding
(PVG FF) technique and a complementary input Gm-C filter
with per-pixel decimation. It supports four recording modes
covering 2.5–20 kS/s through a power-efficient, bandwidth-
scalable continuous time 16 modulator. Fabricated in a 180-nm
CMOS process, this 300 × 300 µm2 ADC achieves >250×

faster (0.05–0.4 ms) stimulation artifact recovery time, enabling
in-stimulation recording. Recording with artifact tolerance was
demonstrated through an in vivo whisker barrel rat experiment.

Index Terms— Artifact tolerance, closed-loop, delta-sigma
modulation, neural recording, neuromodulation, recovery time,
stimulation artifacts, voltage-controlled oscillator (VCO).

I. INTRODUCTION

CLOSED-LOOP neuromodulation is an advanced therapy
that uses real-time feedback to adjust neural stimulation,

effectively treating neurological disorders such as epilepsy
and Parkinson’s disease [1], [2], [3], [4]. It is also used for
feedback in brain-machine interfaces and neuro-prosthetics
for paralyzed people [5], [6] and in localizing functional
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Fig. 1. Closed-loop neuromodulation system illustrating stimulation artifacts.

tissue during brain surgeries [7]. Neural stimulation sends
controlled current pulses into specific brain regions to modu-
late brain activity. Open-loop stimulation can have detrimental
side effects, whereas closed-loop systems adapt based on
the patient’s recorded neural signals, enhancing treatment
precision and efficacy with fewer systemic side effects [8].

Fig. 1 shows a typical closed-loop neuromodulation setup.
There are several techniques to record neural activity that
are classified by the recording location within the brain or
on the surface of the scalp. While the design and techniques
described in this article can be applied in all neural recording
methods, this work focuses on electrocorticography (ECoG),
where the electrodes are placed on the pial surface of the
cerebral cortex to measure local broadband electrical activity,
including local field potentials (LFPs) and extracellular action
potentials (APs). These neural signals have spectral content
from 1 mHz to 10 kHz with peak amplitudes up to 10 mVpp
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[9], requiring less than 10 µVrms noise from the front end [10].
Recording neural activity has been most commonly accom-
plished with metal electrodes, which have a finite, nonlinear
electrochemical impedance at the electrode-tissue interface.
The interface impedance depends on the electrode dimensions
but is relatively high at low frequencies due to their capac-
itive nature (nF range) and becomes nearly resistive above
1 kHz [11]. For capturing low-frequency neural activity and
avoiding signal attenuation, the recording front end requires
M�s of input impedance to have a high-pass corner frequency
of less than 1 Hz. The neural signals are captured by the analog
front end (AFE) and then processed in real-time by a neural
decoding system, often using algorithms to detect pertinent
patterns or anomalies [12], [13]. This information configures
the stimulator to deliver electrical stimulation to the patient
accordingly.

Simultaneous recording of neural signals with electrical
stimulation presents a technical challenge due to the stim-
ulation artifacts. Electrical stimulation is typically delivered
in current mode for precise charge control. With current
amplitudes up to ±5 mA and electrode impedances above
a few k�, the excitation voltages can exceed 10 V [14].
A fraction of this signal may appear as a stimulation arti-
fact at the recording circuit input, marked by large voltage
transients coinciding with stimulation pulses, often exceeding
the neural signal by more than 100× [15], [16]. The stimulus
induces pickup on other electrode channels through capacitive
crosstalk between stimulating and recording electrodes, direct
conduction paths through cerebrospinal fluid, and/or capacitive
coupling to the recording electronics via traces, generating
substantial stimulation artifacts at the recording sites. Precise
modeling of the artifact is impractical because their morpholo-
gies depend on stimulator architecture, current, stimulation
waveform, electrode configuration and placement, and patient
physiology [17], [18].

This article reports a 4 × 2 array of per-pixel second-
order 16 modulators for ECoG (LFP + AP) record-
ing with a submillisecond artifact recovery time, enabling
in-stimulation recording. This is achieved using an ac-coupled
architecture with a time-based ring-oscillator quantizer fea-
turing fast recovery and overrange detection. The architecture
also offers a unique power-efficient bandwidth scaling option.
The performance of this chip was demonstrated through an
in vivo whisker barrel rat experiment and compared against a
commercial chip (Intan RHD2164) [19]. This article extends
the work presented in [20].

The rest of this article is organized as follows. Section II
discusses prior art, followed by the proposed architecture in
Section III. Section IV describes the circuit implementation,
and Section V presents measurement results. Finally, conclud-
ing remarks are made in Section VI.

II. PRIOR ART

Advancements in low-impedance, high-density recording
grids [21] have paved the way for low-noise neural record-
ing systems with high spatial and temporal resolution.
A conventional AFE architecture consists of a high-density
neural recording signal path with programmable gain

Fig. 2. Comparison of (a) PGA + ADC architecture with and (b) ac-coupled
direct digitization architecture in the presence of stimulation artifacts.

amplifiers (PGAs) and a shared analog-to-digital converter
(ADC) [22], [23], [24], [25], [26]. The amplification stage
is typically implemented as an ac-coupled instrumentation
amplifier (IA) with ∼40 dB of gain, capable of effectively
rejecting the tens of mVs of electrode dc offset (EDO)
commonly present at the electrode-tissue interface. With an
input range of a few mVs, this type of AFE readily saturates
during stimulation due to the high gain. The high-pass network
at the input, furthermore, requires large on-chip capacitors
to achieve a cutoff frequency of less than 1 Hz. Because
of this fundamental trade-off with the cutoff frequency and
settling time, it takes hundreds of milliseconds to recover
from an artifact, leading to critical data loss [Fig. 2(a)].
A dc-coupled AFE with a mixed-signal servo loop reduces
area by removing the ac-coupling capacitor, but it still suffers
from stimulation artifacts due to its limited input range [27].
Other techniques have been reported to deal with the artifacts,
such as blanking the recording during stimulation and adding
a discharging circuit to the input [28]; however, with multiple
independent, spatially distributed stimulation channels, this
incurs significant information loss. Synchronizing the blanking
control signal requires precise design regarding its timing and
placement relative to the stimulation waveform. Often, this
synchronization necessitates incorporating a guard band period
alongside the blanking time, which can result in further data
loss. Another drawback of this architecture is the need for
explicit antialiasing filters to prevent the folding of interference
and out-of-band signals into the Nyquist band, which is often
neglected in the analysis [29], [30].

Recent advances in direct digitization-based AFEs over-
come this artifact-related saturation limitation by forgoing
the amplifier and directly connecting the electrode to a high
dynamic range (DR) ADC, typically a continuous-time 16

modulator (CT-16M) [31], [32], [33], [34], [35], [36], [37],
[38]. Removing artifacts from a digitized signal requires a
wide DR to quantize all signals without saturation. CT-16Ms
also benefit from inherent antialiasing filtering, eliminating the
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Fig. 3. Block diagram of the proposed architecture and key coefficients.

need for power-intensive filters at the front of the signal chain.
Different architectures have been explored for stimulation arti-
fact tolerance. 1-16 modulators are suitable for high-density
arrays for their area efficiency and EDO tolerance [32], [39];
however, these systems either have a low ac input range,
making them intolerant to artifacts, or, as in [33], attempt
to increase the ac input range but suffer from degraded
settling speed due to the feedback integrator and increased
distortion at high input levels. A CT-Zoom ADC improves
the DR by adapting AFE gain to input signal amplitude but
experiences higher noise at low PGA gain settings due to the
ADC quantization noise [40]. Incremental ADCs are another
area-efficient solution for high-channel-count neural arrays
with simpler decimation filters and ease of multiplexing [36];
however, they suffer from poor antialiasing. A dc-coupled
architecture ensures a high input impedance, but it comes at
the cost of sensitivity to the input common-mode voltage [31],
[34]. Lee et al. [31], Jeon et al. [34], and Pochet et al. [41]
employ time-based quantizers, which are susceptible to slow
recovery/instability during artifacts beyond the input range and
are unsuitable for clinical systems unless measures are taken
to handle this case.

Fig. 2(b) demonstrates how ac-coupled CT-16Ms break
the trade-off between the high-pass cutoff frequency and
artifact recovery time by upmodulating the input before the
ac-coupling capacitors [41], [42]. EDO and stimulation arti-
facts are upmodulated along with the input signal, which
is subsequently downmodulated within the ADC, while the
ADC’s input impedance defines the high-pass cutoff frequency.
Directly using an ac-coupled CT-16M for this application,
however, has several challenges: slow recovery/instability
during artifacts beyond the input range of the time-based quan-
tizer, power and area limitations, and low-input impedance.

III. ARCHITECTURE

A. ADC Architecture

The proposed 16 ADC architecture is shown in Fig. 3.
The 16 modulator is comprised of a second-order loop
filter with a 17-level quantizer and has an oversampling ratio
(OSR) of 64. It uses the pseudo-virtual ground feedforward
(PVG FF) architecture, which allows the modulator to have
high linearity and a compact area [43]. The technique feeds
forward the error voltage at the PVG node instead of the
input with appropriate scaling, linearizing the first integrator
by having it only process the quantization noise. This enables
the loop to operate with the same dynamics as the standard
feedforward-based architecture while eliminating the internal
feedback DAC(s) and having the feedforward path process
only a small swing, helping with its linearization. The FF
path causes signal transfer function (STF) peaking and reduced
antialiasing. A maximally flat noise transfer function (NTF)
with an out-of-band gain (OBG) of 2.5 was chosen to reduce
quantization noise folding through first integrator nonlinearity
and reduce sensitivity to coefficient variation.

While time-domain-only ADC architectures, such as
voltage-controlled oscillator (VCO)-based ADCs, are popular
for their ability to run off a low-supply voltage and pro-
cess scalability [41], [44], they contend with issues, such
as VCO flicker (1/ f ) noise since they cannot be chopped
and compromised noise efficiency when used as the first
integrator [44]. This system instead uses a Gm-C filter as the
first integrator, using chopping to reduce the 1/ f noise. At low
frequencies, chopping also improves the ADC’s common-
mode rejection ratio (CMRR). The chopping frequency, fch,
is set to half of the sampling frequency, fs/2, to avoid quantiza-
tion noise folding [45]. The low-frequency noise and offset are
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Fig. 4. Details of (a) conventional phase quantizer, (b) proposed phase quantizer, and (c) timing waveforms.

upmodulated to a higher frequency, which goes through the
ADC STF and is filtered out by the decimation filter. The
second stage is an area-efficient time-based integrator realized
by a Gm-current-starved current-controlled oscillator (CCO)
with a counter. The outputs of the Gm-C filter, FF path, and
capacitive DAC (CDAC) are chopped to ensure correct polarity
in the loop.

The CCO’s phase is quantified with 6-bit counters, a differ-
encer, and logic that detects quantizer overrange and prevents
phase wrapping [41], [44], [46]. This technique ensures ADC
stability amid large artifacts that may cause ADC overrang-
ing. The 4-bit feedback CDAC is mismatch-shaped with a
first-order shaped tree-structured dynamic element matching
(DEM) encoder and resampled with a delay of 6.25% of the
modulator sampling period (Ts) to account for the quantizer
and DEM delay. The ADC output is passed through the
decimation filter, which reduces the ADC data rate to the
Nyquist rate, fdec, reducing datalink power.

Chopping the CDAC induces large differential-mode chop-
ping artifacts at the high-impedance PVG node due to the
sudden switching and settling of the DAC capacitors upon
a polarity swap, causing harmonics and quantization noise
folding. Deadband (DB) switches suppress the differential
chopping artifacts at the Gm input [42]; however, they must
be large for low-input-referred noise (IRN) applications and
would load the input. For remedying this issue, the DB
switches are moved from the sensitive input node to the Gm-C
output and the feedforward input and opened for 6.25% of Ts
during chopping.

Chopping before the input capacitance reduces the input
impedance to the M� level, which is too low to interface
with small electrodes (that have several M� impedances).
An auxiliary amplifier precharges the input capacitance after

the chopping clock, thus reducing the charge that needs
to be supplied from the electrode and increasing the input
impedance, ZIN. The input impedance is increased to greater
than 30 M� using this technique. The input impedance booster
was implemented similarly to [15] using buffer duty cycling
for power savings. Chandrakumar and Markovic [15] use back-
to-back choppers after the amplifiers due to dual chopping
frequencies. Since we chop the modulator and the auxiliary
amplifiers ( faux) at fs/2, we can combine the switches (M2
and φ in [15]) into a single set of switches, reducing charge
injection.

B. Artifact Rejection

In theory, direct digitization offers uninterrupted monitoring
by offering a higher DR to accommodate artifacts. As shown
in Fig. 4(a), a conventional phase quantizer receives the phase
output from a level shifter, which converts the CCO phase
output of the integrated Gm current into a rail-to-rail signal.
It then quantizes this phase using Gray counters for the
positive and negative sides and subtracts the results to obtain
the ADC output. The n-bit counters operate with modulo-2n

arithmetic, where the output “wraps around” when reaching
−2n−1 < DC < 2n−1

−1, where DC is the counter output.
The phase difference is thus limited to 2n arithmetic. With
large inputs like stimulation artifacts that can momentarily
overrange the ADC, the phase difference at the n-bit counter
output wraps modulo 2n , introducing a large error back into
the loop. This results in modulator oscillations leading to
phase wrapping-induced instability. Previous work will oscil-
late indefinitely and require all integrators in the modulator
to be reset to restore normal operating conditions, creating
a long period of data corruption impractical in closed-loop
neuromodulation [38], [41], [43]. Since the signal strength
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of these artifacts varies greatly due to external factors like
electrode design and human physiology, increasing the ADC’s
DR beyond a certain point becomes inefficient.

Fig. 4(b) shows the implementation of the proposed fast-
recovery, overrange detecting phase quantizer. We introduce
a saturation detector and expand the counter depth by two
additional bits. One extra bit would have been sufficient to
detect saturation and reset the counters, but using just one
extra bit would have reduced the no-overload range of the
ADC due to clipping. In practice, a few decibels of backoff are
required to avoid this. A voltage quantizer does not have the
two complement wrapping exhibited by the CCO quantizer.
To address this issue, we add two additional bits: the first
bit allows the second integrator to exceed the clipping point
by 6 dB and extends the modulator’s no-overload range. The
second bit provides the necessary DR for modulator reset
without allowing a phase wrap at the difference, which will
destabilize the modulator. The circuit for the added bits is
clocked at a fraction of the CCO frequency, fCCO, and thus,
requires negligible additional power. Overload recovery is
nearly instantaneous after an artifact, as the counter resumes
counting once the input returns to the normal range. Since
the decimation filter has the slowest time constant in the
signal chain, the decimation filter sets the artifact recovery
time. Fig. 4(c) illustrates the timing waveforms demonstrating
the described problem and solution. A conventional phase
quantizer becomes unstable when overloaded, leading to oscil-
lations until the power is reset. The proposed phase quantizer
detects saturation when the artifact is present and recovers
quickly, minimizing data loss.

C. Bandwidth Scaling
Neural signals are categorized by their frequency band and

require a power-scalable AFE based on the operation mode.
The different modes provide flexibility for recording broad-
band or selecting bands of cortical neuronal activity. One way
to scale down CT-16Ms integration bandwidth is by keeping
the ADC clock rate constant and increasing the decimation
factor. This improves signal-to-noise ratio (SNR) by 3 dB
for every 2× reduction while maintaining the same power.
Considering scenarios where hundreds of readout channels
operate simultaneously inside the skull, efficient power scaling
is important to enable operation with more channels at lower
sampling rates while adhering to human tissue thermal limits.

Fig. 3 shows four operation modes supported by this design
along with their bandwidth and loop coefficients: modes 0,
1, and 2 provide the capability of recording delta (1–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–40 Hz), gamma
(40–100 Hz), and high-frequency oscillations (100–500 Hz),
and mode 3 allows recording single unit and multiunit
neuronal activity (500–10 000 Hz). Mode 0 satisfies require-
ments for clinical monitoring of activity below 500 Hz,
and modes 1 and 2 allow oversampling of such activity.
Mode 3 can be used for clinical monitoring and research to
identify fast neuronal events that can be otherwise missed [47].
The CT-16M architecture mandates scaling integrator coef-
ficients in line with fs to maintain consistent loop dynamics.
For the first integrator, we implement transconductance-based

Fig. 5. Datalink noise immunity.

Fig. 6. On-chip timing signal generation (BW = 10 kHz).

scaling, ensuring power scales proportionally with fs. For the
second integrator, CCO-based scaling is used to scale fCCO
and the quantizer power proportionally.

D. System-Level Considerations

Several system-level decisions were made to ensure scalabil-
ity to the future target of 1024 channels/pixels on a single chip.
First, the decimation filter is implemented within each pixel,
substantially reducing the datalink speed and power consump-
tion, which is proportional to the OSR. Without the decimation
filter, the required data link speed would reach 1.3 Gb/s for
1024 channels running at a 10 kHz BW, making wireless
data transfer from a subcutaneous circuit impractical. This
design also offers stronger antialiasing rejection of out-of-band
signals compared to the PGA + multiplexed Nyquist ADC
architecture since they typically use first- or second-order
antialiasing filters with −6 or −12 dB/oct attenuation. Finally,
for improved noise immunity, the serial data clock frequency,
fDL, is an integer multiple of fs (across all modes). For shield-
ing the ADCs from datalink noise, the energy is positioned in
a null of the modulator’s STF, as shown in Fig. 5.

For simplifying routing and to save power, each pixel
generates its own intermediate timing signals for the ADC,
as shown in Fig. 6. The chip receives an off-chip master clock,
fM, at 20.48 MHz (the same as fDL for BW = 10 kHz, which
is highest clock frequency on chip) to generate all on-chip
timing signals. Two clock signals, fpx and fpx_d, run at the
16 modulator’s clock modulator frequency, with the latter
delayed by 6.25% of Ts. These signals are generated at the
global level and routed to the pixel array for further signal
generation. The duty cycle of these signals was chosen to
simplify the generation of the timing edges needed within the
modulator. Edge timing based on inverter delays was avoided
to minimize variation.
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Fig. 7. Schematic of the Gm-C integrator.

IV. CIRCUIT IMPLEMENTATION

A. Gm-C Integrator

Fig. 7 shows the implementation of the Gm-C integrator
with the input chopper switches and ac-coupling capacitors.
The ADC input is chopped and capacitively coupled through
two 650-fF metal–insulator–metal (MIM) capacitors, CIN, onto
the PVG, a high-impedance node such that the input capacitive
attenuation is 0.87. CIN was selected to optimize the balance
between the ADC’s input impedance, CDAC area, and the
unit CDAC element layout and mismatch constraints. The
input chopper switches are clock boosted to 2VDD to reduce
the switches’ ON-resistance and improve linearity without
increasing their size. The input common-mode voltage, VCM,
is set through a pseudoresistor divider.

The Gm-C integrator incorporates transconductance-based
coefficient scaling, comprising four parallel Gm branches with
drive strength ratios 1:1:2:4, which are turned on/off through
the cascode bias nodes. The Gm is scaled down by the same
factor as fs, keeping the integrator gain, Gm/ fsCI, consistent.
This topology ensures a nearly constant input capacitance from
the 1st integrator, which helps keep the SNR constant due to
input capacitive network attenuation across modes. It also has
2–8× more power and is more area efficient than scaling the
integration capacitor CI, and scaling the bias current alone is
inaccurate.

Each branch comprises a dual-tail, complementary-input
transconductor with a cascoded load. As the first block in
the signal chain, optimizing this design for noise efficiency
is critical for overall resolution. We, therefore, use comple-
mentary inputs to boost the noise efficiency by 2×, with
both PMOS and NMOS inputs biased in sub-subthreshold
for an effective Gm/ID of 40 S/A. With a 3.2 fF unit CDAC
element, the input devices are near minimum size to preserve
SNR against input capacitive network attenuation. The Gm is

Fig. 8. Schematic of the time-based integrator.

calculated by allocating 80% of the overall noise budget to
its thermal noise. Medium Vt (MVT) devices were used to
reduce the supply to 0.9 V and improve power efficiency. The
differential input range of the first integrator is restricted to
15 mVpp to minimize SQNR degradation due to quantization
noise folding. The downmodulation chopper switches were
implemented with small switches to reduce the gate capac-
itance, minimizing clock feedthrough and charge injection
errors. Chopping lowers the flicker noise corner frequency
from 32 kHz to <50 Hz, reducing its contribution from the
dominant noise source to 5% of the 1st integrator’s total noise.
Cascode transistors reduce the integrator leakage (60 dB dc
gain) and enable downmodulation at a low-impedance node for
faster settling. The cascode transistors and current mirrors are
biased in moderate inversion, meeting the target specifications
(differential output swing of 100 mVp) with 3σ yield. A triode-
based common-mode feedback (CMFB) topology was used for
its high input-linear range and stability. It senses the output
common-mode voltage and adjusts the NMOS bias current via
MOS resistors.

In area-constrained designs, the size of the output capac-
itors in Gm-C filters is often a concern. To minimize area,
CI is implemented with NMOS varactors. The high capacitor
density and differential topology save 4× area over MIM or
metal–oxide–metal (MOM) capacitors. Connecting them in an
antiparallel configuration also cancels their even-order nonlin-
earity. MOS capacitors are unsuitable for this topology since
they must be biased in inversion or accumulation, restricting
their use to single-ended use cases.

B. Time-Based Second Integrator

The second integrator comprises a ring-oscillator-based
CCO that combines the Gm-cells of the direct (Gm2) and
feedforward paths (GmFF), as shown in Fig. 8. The CCO uses a
pseudo-differential NMOS cross-coupled inverter architecture
for noise efficiency [48]. First-order noise shaping provided
by the loop relaxes the noise specifications of both Gm-cells
and the CCO. Gm2 and GmFF maintain a 1:15 ratio, using
unit devices with similar Gm/ID as the Gm-C filter to ensure
tracking of PVT variation. The gain of the second integrator is
scaled across modes by changing the number of CCO stages
with the same CCO bias current. This keeps the same rate
of edges in the ring while scaling down the rate sent to the
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Fig. 9. Circuit implementation of the level shifter.

Gray counter. This method consumes 2–8× lower power than
frequency divider-based scaling, where a divider would be
after the level shifter. CCO-based scaling scales down fCCO
and the CCO gain, KICCO, by the same factor as fs, keeping
the integrator gain, KICCO/ fs, constant. Part of the current
is bled off to reduce fCCO to 10 MHz (typical), reducing
the counter’s power by 2×, which is important as fCCO
is 10 × fs.

The level shifters following the CCO, which are required
to drive the CMOS counters and phase quantizer, are imple-
mented, as shown in Fig. 9. It uses a bootstrapped gate
drive by decoupling the PMOS and NMOS driver with ac
coupling [49]. Delay from level shifters is signal-dependent
due to the variation in CCO output swing with the input signal,
making delay reduction important. This topology reduces the
large delay from contention between pull-down and pull-up
transistors in a conventional latch in a power-efficient manner.

C. Quantizer and DAC

The CCO’s phase is quantified using a counter-based quan-
tizer. Since the CCO edges are asynchronous to the sampling
instant, a Gray code counter avoids sampling errors by ensur-
ing only one internal bit transitions at a time. The power
of Gray counters is reduced by 40% compared to a binary
counter with Gray-to-binary and binary-to-Gray encoders [43]
by implementing a DFF-only counter, which directly counts in
Gray code. This halves the power overhead of every additional
bit, making the added power consumption of the circuitry that
accommodates the two bits for overrange correction negligible.
The ADC is passed through a first-order shaped tree-structured
DEM encoder. The DAC unit elements are custom MOM
capacitors for more flexibility during layout, with a 3.2-fF
unit capacitance for a 4-bit thermometer-coded DAC. The
∼0.8% capacitor variation degrades the ADC’s performance
by less than 1 dB in simulation. Instead of re-clocking the
DAC using DFFs, latches were used because they reduce errors
caused in the event of quantizer metastability by allowing a
“late” edge to propagate to the DAC immediately during the
latch’s transparent phase. All digital circuits used a custom
design flow with a mix of standard cells and custom-designed
circuits to optimize each block for power and area compared
to standard logic synthesis and place-and-route flow.

D. Decimation Filter

The on-chip decimation filters decimate each ADC output
by 64× to the Nyquist rate, using a third-order CIC filter

Fig. 10. Schematic of the decimation filter.

Fig. 11. Chip microphoto.

Fig. 12. Power and area breakdown.

with 16-bit output resolution, as shown in Fig. 10. This filter
provides third-order antialias filtering for signals above fs/2,
exceeding typical filters in PGA-shared ADC architectures.
The transfer function of the filter is

H(z) =

[(
1 − z−64

)(
1 − z−1

) ]3

. (1)

The register bit-widths of each stage were optimized using
Hogenauer’s register bit-pruning algorithm [50].

V. MEASUREMENT RESULTS

This 8-pixel chip is fabricated in 180-nm CMOS, with each
pixel occupying 0.09 mm2. An annotated chip micrograph
is shown in Fig. 11. An octagonal electrode pad, measuring
66 µm on metal layer 6, is added to facilitate the chip’s
interfacing with electrode grids through bumping, supporting a
future expansion to 1024 pixels on a single chip with minimal
design modifications. Each pixel consumes 14 µW from
0.9 and 0.7 V supplies for analog (53%) and digital (47%),
respectively, as shown in Fig. 12. Section V-A describes the
electrical measurements followed in vivo biological measure-
ments in Section V-B.

A. Electrical Characterization

The chip was tested using an Audio Precision APx555B
ultralow distortion signal source applying a 125-mVpp
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Fig. 13. Measured ADC output spectrum before and after in-pixel decimation
filter.

Fig. 14. Measured ADC IRN spectrum across modes.

Fig. 15. (a) Measured SNR and SNDR for mode with BW = 10 kHz.
(b) Measured SNDR across modes.

full-scale (FS) sinusoidal input at 1.087 kHz. Fig. 13 shows
a measured spectrum with and without decimation filtering
where the ADC achieves a 78.6 dB SNDR and DR in a 10 kHz
bandwidth and an SFDR of 97.7 dBc with fs = 1.28 MHz and
an fs/2 chopping clock. The 60- and 180-Hz tones are caused
by power line interference. The characteristic 40 dB/decade
noise shaping from a second-order modulator is apparent in
the spectrum. The magnitude droop in the decimated output
is typical of the sinc3 function, which can be corrected in the
ECoG system software using a simple filter

y[n] = 1.5x[n]−0.5y[n − 1]. (2)

Fig. 16. Measured IMD.

Fig. 17. Measured ADC (a) CMRR and (b) PSRR.

Typically, compensation FIR filters are used to correct for
the magnitude droop of the CIC filters. The ADC IRN was
measured with shorted inputs, and the corresponding power
spectral density (PSD) is shown in Fig. 14. Because of the
scalable architecture, the integrated IRN is constant (6 µVrms)

across the different modes. The DR was characterized by
sweeping the input amplitude, achieving a 78.6 dB DR,
as shown in Fig. 15, where the SNR and SNDR differ by
<0.1 dB for the 10 kHz bandwidth mode. The DR across
modes [Fig. 15(b)] differs by <1 dB as the FS range and IRN
remains constant across modes.

Linearity is not a stringent requirement in this applica-
tion due to the inherent nonlinearity of the electrodes. For
completeness, this ADC was, however, tested for linearity by
exciting it with two tones at −6 dBFS. Fig. 16 shows the
measured intermodulation distortion (IMD) is 93.6 dBc. The
CMRR was measured by applying a 10-mVpp signal to shorted
inputs. The CMRR remains above 65 dB from dc to 10 kHz
(n = 5, average σ = 7 dB), as shown in Fig. 17(a). The
same process was repeated, with the signal applied to the
analog supply voltage, VDDA, to measure the power supply
rejection ratio (PSRR). Fig. 17(b) demonstrates robustness
against supply voltage variation, with better than 70 dB PSRR
(n = 5, average σ = 6 dB). For completeness, the PSRR of
the digital supply, VDDD, was also measured at >100 dB.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on March 30,2025 at 19:16:55 UTC from IEEE Xplore.  Restrictions apply. 



902 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 60, NO. 3, MARCH 2025

Fig. 18. Measured ZIN with and without boosting.

Fig. 19. Measured pixel-to-pixel isolation.

Fig. 20. Artifact recovery time (a) setup, (b) measurement in mode 3, and
(c) measurement in all modes.

To measure the input impedance, ZIN, high precision 1 M�

resistors were placed in series with the ADC inputs, and an IA
amplified the voltage across them. Fig. 18 shows ZIN measured
across the bandwidth with and without activating the auxiliary
path, where ZIN is boosted by 34× when the auxiliary path is
enabled. Pixel-to-pixel isolation was measured by injecting an
FS input into pixel 3 while shorting the inputs of the others.
Fig. 19 plots the output spectrum of all pixels. The design
has >60 dBc isolation for adjacent pixels with respect to the
aggressor.

Finally, the artifact recovery time was measured using a
function generator, as shown in Fig. 20(a), where the positive

Fig. 21. In vivo measurement setup.

Fig. 22. Measured neural recordings with this chip and a commercial Intan
chip.

Fig. 23. Measured stimulation artifact recovery time for this chip and
commercial Intan chip.

input was given a 5 mVpp input, and the negative input was set
at 450 mV with periodic overranging pulses of 4 × FS, varying
between 450 and 950 mV. This drives the input to VDDA,
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TABLE I
PERFORMANCE SUMMARY AND COMPARISON TO THE STATE-OF-THE-ART

although the recovery time is not dependent on the input to
the ADC, as the saturation detector of the quantizer works
independently. The decimated output is plotted where the
y-axis is input-referred [Fig. 20(b)]. The output saturates in the
presence of the overranging pulse to 62.5 mV, the single-sided
FS range of the ADC. The recovery time, defined as the period
required to recover from saturation and resume recording,
is dictated by the frequency response of the decimation filter
(Tdec), as expected from the design. The ADC output recovers
in one decimated sample (50 µs for 10 kHz BW). Fig. 20(c)
shows the recovery time across modes and the step response
of the decimation filter.

B. In Vivo Measurements

An in vivo brain recording experiment was performed
to compare the performance with and without stimulation
against a commercial chip, the Intan RHD2164 [19]. The
electrode grid was composed of 8 platinum nanorod (PtNR)
contacts [51] with 200 µm diameter and was placed on the
primary somatosensory cortex of a rat. Mechanical deflections
of the rat whiskers by timed and controlled air puffs lead
to somatosensory evoked potentials measured by the elec-
trodes. The precise topographic arrangement of the responsive
regions is referred to as the whisker barrel cortex that our
team used in prior studies to validate different electrode
materials and recording systems [21], [52], [53]. Fig. 21
shows the measurement setup for the experiment conducted
on a Sprague-Dawley rat implanted with PtNR electrodes.
The electrode contact exhibited an impedance of ∼10 k� at
1 kHz in vivo. The impedance is predominantly capacitive
at low frequencies, necessitating a high-impedance ADC to
prevent signal attenuation. For evoking sensory activity, air
puffs were delivered through a microcapillary tube using a

PV830 pneumatic PicoPump (World Precision Instruments,
Inc.) with 1-s pulses to individually stimulate the contralateral-
side whiskers. Eight electrodes from the array were connected
to eight recording pixels on either this chip or the Intan
recording IC. A Pt wire inserted into the rat’s skull was
used as the reference electrode. The entire setup, including
the rat and the recording front end, was placed in a Faraday
cage connected to the ADC ground to filter out power supply
interference according to animal protocol #S16020, approved
by the Institutional Animal Care and Use Committee (IACUC)
at the University of California, San Diego. The PC and
measurement instruments were outside the cage. An FPGA
(Opal Kelly XEM6310) provided the ADC clock, captured
the data, and sent it to a PC for processing.

Fig. 22 compares somatosensory evoked potentials induced
by 1 Hz air puffs on the rat’s whiskers, recorded using the
Intan system and this chip. ECoG activity (70–200 Hz) in
response to the air puff was simultaneously captured across
all eight pixels. Two pixels from each chip are shown, demon-
strating comparable SNR. An Intan stimulator (RHS 2116)
[54] was added to the test setup to compare the response
in the presence of stimulation artifacts. All 16 stimulator
channels were connected to 16 different electrodes, separate
from the recording electrodes. During monopolar stimulation
(500 µA at 100 Hz), the Intan front end saturated, resulting
in data loss, as shown in Fig. 23. We chose monopolar
stimulation for its larger volumetric stimulation impact and
lower stimulation currents than bi-phasic stimulation. 500 µA
was selected to demonstrate the chip’s fast settling time even
under high-current conditions, as it is the maximum current
at which the 200 µm diameter PtNR contact remains below
the water electrolysis threshold [55]. Given that 50–500 Hz is
standard in clinical settings, 100 Hz was selected. Since the
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Intan uses a PGA + shared ADC architecture for recording,
it has a much lower input range (5 mVp) than this chip.
Additionally, the input high-pass network on the Intan results
in a longer recovery time after saturation. In contrast, this
chip outperformed by recovering with immediate observation
of neural activity.

C. Comparison to the State-of-the-Art
Table I compares the performance of this work with recently

published state-of-the-art neural recording front ends. The
table is categorized by readout topology: PGA + shared
ADC [19], [23], [26], [30], which uses capacitive input, and
CT16M, which uses capacitive with [33] or without chop-
ping [32], or Gm-input [34], [36], [38]. This work achieves the
fastest (sub-ms) stimulation artifact recovery time. The recov-
ery time of this work is >250× faster than existing solutions.
This is the first work to address the artifact-induced instability
problem associated with CT-16Ms using time-based quan-
tizers [31], [34], [41], [43], making them suitable for clinical
use. The chip is competitive in other metrics, including power
consumption, noise performance, and robustness to variations.
It supports multiple bandwidths with consistent performance
and power scaling, allowing customization of the AFE for
specific neural recording frequency bands.

VI. CONCLUSION

This article presents a 4 × 2 array of per-pixel 2nd-order
CT-16Ms with a time-based ring-oscillator quantizer for
direct digitization of neural recording signals in a closed-loop
neuromodulation system. Each design decision was made to
ensure the system is energy-efficient, robust, and scalable to
the future target of 1024 pixels on a single chip. It achieves
sub-ms artifact recovery time, enabling in-stimulation record-
ing by preventing modulator instability, which is accomplished
through fast recovery and overrange detecting phase quantizer.
The ADC features a pseudo-virtual ground feedforwarding
technique and a complementary input Gm-C filter with a per-
pixel decimator, ensuring an efficient and optimized design.
It supports four modes of recording 2.5–20 kS/s via a power-
efficient, bandwidth-scalable CT-16M. The chip’s perfor-
mance was successfully validated through an in vivo whisker
barrel rat experiment and compared against a commercial Intan
chip, showing better artifact recovery time. This work demon-
strates that time-based modulators can effectively record clin-
ical ECoG signals in closed-loop neuromodulation systems.
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