

Session 22 – Sensors and Integration

A 2-in-1 Temperature and Humidity Sensor Achieving 62 fJ·K² and 0.83 pJ·(%RH)²

Haowei Jiang, Chih-Cheng Huang, Matthew Chan, and Drew A. Hall

University of California, San Diego La Jolla, CA, USA

Relative humidity and temperature (RH/T) monitoring applications:

Need: distributed Internet-of-things (IoT) environmental sensors

iiii CICC

Motivation: IoT Applications

Desired features:

- Low energy/measurement
- High sensitivity
- Monolithic and low-cost
- Wide supply range and supply insensitive

ie CICC

Transducers Selection: Temperature

K. A. Makinwa, "Smart temperature sensor survey", 2010 to date.

Transducers Selection: RH

Mechanism:

- Interdigitated top layer metal
- Gaps filled with polyimide (PI)
- ε_{PI} ∝ RH
- Metal-PI-metal capacitance < RH
 Benefit:

CMOS compatible + fully integrated

Farahani et al. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review, *Sensors*, 2014

Prior RH/T Sensors

Example:

Sharp-QM1H0P00, ADI-AD7747, TI-HDC2080, ST-HTS221, TE-HTU21, etc.

- Widely used in commercial products
- Require *two distinct AFEs* that need extra
 - Power
 - Area
 - Complexity

Proposed RH/T Sensor Architecture

- Monolithic, CMOS-compatible transducers
- Require only one unified AFE that saves
 - Power
 - Area
 - Complexity

Proposed RH/T Sensor Architecture

- Monolithic, CMOS-compatible transducers
- Require only one unified AFE that saves
 - Power
 - Area
 - Complexity
- Closed-loop *R*&*C*-to-*T* conversion →
 High linearity & *robustness*
- Incomplete-settling SC-based WhB → High sensitivity & energy efficiency

Prior RC-Based Front-Ends

RC band-pass-filter-based

[P. Park, JSSC, 2015] [S. Pan, ISSCC, 2017] [W. Choi, ISSCC, 2018] [S. Pan, ISSCC, 2019]

Problems:

- C_{parasitic} degrades the sensitivity
- Sensitive to in-band supply noise
- $4 \times C V^2 f$ power due to the I/Q generation
- Need multiple matched components

Prior RC-Based Front-Ends

Switched-capacitor-based I

Switched-capacitor-based II

[R. Yang, High resolution CDC, JSSC, 2017]

[T. Jang, Low-power timer, ISSCC, 2016]

Problems:

- Need active drivers (LDOs or high-bandwidth, low-output-impedance OpAmp) and reference voltages → extra power overhead
- Extra noise sources

Revisit the SC-Resistor

Assuming C is fully charged to $V_{\rm s}$ & fully discharged to ground

Problem:

Need a voltage source (i.e., low impedance) as a SC driver

 \rightarrow prior work uses either LDO or active integrator (virtual ground)

Can we avoid the SC driver at the cost of incomplete-settling?

Incomplete-Settling SC-Based WhB

Q1: Assuming $R_1 = R_2$, is f = 1/RC when the bridge is balanced $(V_{A,mean} = V_B)$? *A1*: No. $f = \frac{1+e}{e} \frac{D}{RC} \approx \frac{0.684}{RC}$, assuming 50% duty-cycle

Q2: Why do I care if $f \neq 1/RC$?

A2: Because the error is hard to calibrate:

- Not constant, but depends on duty-cycle
- Highly sensitive to $C_{\text{parasitic}}$ at node A

Proposed Incomplete-Settling SC-Based WhB

C_f minimizes the incomplete-settling error

Proposed Incomplete-Settling SC-Based WhB

Benefits:

- Integrate *R*-transducer & *C*-transducer
- Reduce the settling error by \sim 5200× (choosing $C_{\rm f} = 60C$) at no static power cost
- Insensitive to C_{parasitic} & switching imperfections
- High sensitivity & inherent supply rejection
- Low swing → relax readout circuit linearity requirement
- $R_1 \& R_2$ branch costs little power & area

WhB front-end:

- Two SC cells in time-multiplexed fashion
- $R_1 = R_2$ ensures the maximum sensitivity

Active loop LPF:

- Chopping removes 1/f noise & offset
- Clock divider \rightarrow 8× lower g_m -cell BW & power

- VCO & TDC:
- A VCO closes the FLL $\rightarrow f = 1/RC$ w/ high loop gain
- A TDC samples the VCO phases & achieves 1st order noise-shaping

- Temp. mode: $T_{\text{Temp}} = R$
- RH mode: $T_{\rm RH} = RC_{\rm RH}$
- Temperature effect on RH can be removed by correlating the two results

Chopper-Stabilized Active Filter

- Choose g_m-C over closed-loop options due to
 - High energy efficiency
 - Relaxed linearity requirement
- Telescopic + chopping → >80dB gain over PVT & 2.4 noise efficiency factor
- Down-converting at cascode-nodes → ~100× lower impedance & higher bandwidth

- VCO noise attenuated by active filter gain
- $1-z^1$ restores the *f*-to-phase integration & shapes the quantization noise
- 2MHz sampling rate (OSR=1000) \rightarrow 116dB SQNR

System Linearity Verification

- Simulated w/ ideal R & C
- >92dB loop gain over PVT
- <±10ppm linearity error from -40°C to 85°C

FLL provides 16-b RC-to-T linearity across industrial temperature range

ie cicc

Implementation

Power breakdown (µW)

- Implemented in TSMC 180nm process
- Active area: 0.72mm² (RH transducer: 0.21mm²)
- Power consumption: 15.6µW @ 1.5V (RT)

Measurements: FLL & TDC

- FLL RMS jitter: 17ps @RT
- TDC bitstream shows 20dB/dec. noise shaping

Measurements: Resolution vs. Time

- Resolution was measured at 300K & 35%RH
- Normalized to temperature and RH inputs
- 2mK temperature resolution & 0.0073%RH humidity resolution achieved in 1ms

Measurements: Mode Switching Transient

- FLL settles in 0.6ms to re-balance the WhB
- $V_{\rm A}$ settles back to $V_{\rm DD}/2$
- VCO settles to a different operating point

Measurements: Temp. Transfer Curve & Error

- 1st order calibration; no high-order polynomial fit due to FLL's high linearity
- 3σ error: 0.55K in the industrial temperature range

Measurements: RH Transfer Curve & Error

- 1st order calibration; no high-order polynomial fit due to FLL's high linearity
- 3σ error: 2.2%RH from 10%RH ~ 95%RH (limited by instrumentation)

IE

Comparison w/ Prior Environmental Sensor

	Parameter	P.Park JSSC'15	S. Pan ISSCC'19	S.Pan ISSCC'19	W. Choi ISSCC'18	Z. Tan JSSC'13	S. Park VLSI'18	Maruyama JSSC'18	This Work
System	Sensor type	Temperature				RH		RH & Temperature	
	Tech. (nm)	180	180	180	65	160	180	180	180
	Active area (mm ²)	0.09	0.12	0.12	0.007	0.28	2.7	4.5	0.72
	Supply (V)	1.7/1	1.6~2	1.6~2	0.85~1.05	1.2	1	1.55	1.5~2
	Conversion time (ms)	32	10	10	1	0.8	1.28	0.024	1
	Power (µW)	31	52	94	68	10.3	2.69	3875	15.6
Temp. sensor	Temp. range (°C)	-40~85	-40~180	-55~125	-40~85	25 only	N/A	-20~85	-40~85
	3σ error (K) [trim points]	0.12[3]	0.1[2]	0.14[2]	0.7[2]	-	-	0.6[NA]	0.55[2]
	Resol. (mK)	2.8	0.46	0.16	2.8	-	-	15	2
	FOM(fJ·K ²)	8,000	110	20	530	-	-	20,925	62
RH sensor	RH range (%)	-	-	-	-	30~95	30~90	0~100	10~95
	3σ error (%) [trim points]	-	-	-	-	>2[2]	5.6[NA]	4[NA]	2.2[2]
	Resol. (%RH)	-	-	-	-	0.05	0.038	0.0057	0.0073
	FOM(pJ·%²)	-	-	-	-	20.75	4.97	3.02	0.83
IEE	IEEE CICC, Austin, TX, April 14-17, 2019								

Conclusion

Target:

 A compact, energy-efficient & robust environmental sensor for IoT applications

<u>Techniques:</u>

- Incomplete-settling SC-based WhB → High sensitivity & low power
- FLL + noise-shaping TDC \rightarrow high linearity & high DR

<u>Results:</u>

- Fully integrated temperature & humidity sensor consisting of a unified R&C-to-D converter, achieving:
- 62fJ·K² & 0.83pJ ·(%RH)² FOMs normalized to temp. & RH
- 0.12K/V & 0.43%RH/V supply insensitivity

Acknowledgement

- This work was supported in part by equipment purchased through a DURIP award from the Office of Naval Research (award no. N00014-18-1-2350).
- The authors thank Xiahan Zhou for digital synthesis.

