

Session 11 - CMOS Biochips and Bioelectronics

A 16 × 20 Electrochemical CMOS Biosensor Array with In-Pixel Averaging Using Polar Modulation

Chung-Lun Hsu^{*}, <u>Alexander Sun</u>^{*}, Yunting Zhao^{*}, Eliah Aronoff-Spencer[†] and Drew Hall^{*}

*Department of Electrical and Computer Engineering, University of California, San Diego, USA †School of Medicine, University of California, San Diego, USA

JACOBS SCHOOL OF ENGINEERING 1 Electrical and Computer Engineering

Point-of-care (POC) biosensors

iSTAT, Abbott Laboratories

HIV-1/HIV-2 Rapid Screen

- Brings molecular testing closer to patient for faster diagnosis
- · Leads to earlier treatment in and outside clinical setting
- Designed for detection of single or small set of analytes

Time consuming and impractical for multi-analyte disease screening

Biosensor Arrays

GeneChip Scanner 3000, Affymetrix

NextSeq 550, Illumina

Agilent G2565CA

- Biosensor arrays offer parallelized multi-analyte detection
- Widely used arrays rely on expensive and bulky scanners
- Electrochemical Impedance Spectroscopy (EIS)
 - Benefits from scalability of electrochemical sensors
 - Allows for both sensors and circuitry to be integrated together

EIS arrays are a promising technology for POC diagnostics

Impedance Spectroscopy Sensor f //// **Electrochemical Cell Reference Electrode Capture DNA** Electrode

Impedance Spectroscopy Sensor

measure impedance from 0.1 Hz to 100 kHz

Standard EIS requires sensitive detection of both magnitude and phase

Biosensor Impedance Model

 10^{5}

 \mathbf{C}_{0}

Only a single portion of impedance is modulated by binding

For biosensors, binding can be monitored by either magnitude or phase

Magnitude / Phase Measurement

Effect of 100 nF capacitance change in electrochemical cell

Capacitance change affects both magnitude and phase similarly

Requirements for phase less stringent than magnitude

Conventional EIS Measurement Circuitry Real / Imaginary Based

- X Quadrature signal generation
- X Lock-in amplifier/multipliers/integrators

Conventional EIS Measurement Circuitry

- Only single sinusoid generation
- **X** Separate magnitude and phase blocks
- X Magnitude spans several orders

Phase only detection can simplify and reduce measurement circuitry

Polar Phase Measurement

Reduced measurement circuitry and area
 TDC footprint < ADC, allows for in-pixel digitization
 Topology enables in-pixel averaging for SNR improvement

Smaller in-pixel circuitry area for higher density arrays

CMOS Biosensor Array

System Architecture

Mostly-digital circuitry reducing pixel area

Resistive Feedback TIA

- 142 µW, 100 dB, &
 36 MHz unity GBW
- Designed to minimize 1/f noise

Flicker noise corner less than 1 kHz and drives $R_{\rm f}$ = 100 k Ω

Phase-to-Digital Converter

negligible leakage V_{DD} current in off state $\phi_{_{\mathrm{XOP}}}$ Differential symmetric XOR • V_{ss}. 7-stage pseudo differential ٠ clocked sense gated-ring oscillator (GRO), amplifiers adds $\pi/7$ deglitch $f_{\rm osc} = 11 \text{ MHz}$ fine quantization levels state-to-phase logic counter fine residue 14-bit counter depth coarse out

ie cicc

CICC 2018 San Diego, CA

GRO sized for

 $\varphi_{\rm ref}$

 φ_{sig}

 $\varphi_{\rm XOR}$

- TDC scheme has inherent in-pixel accumulation
- Averages out the jitter and noise of single XOR pulse

Reduce jitter/phase noise by increasing measurement cycles

Setup

Characterization of In-Pixel Circuitry

Mock electrochemical cell at inputs (sig & ref)

Linearity

Setup

Noise

→ 90°

 V_{FG}

Characterization of In-Pixel Circuitry

Mock electrochemical cell at inputs (sig & ref)

SNR is increased by +10dB with 10× in-pixel averaging cycles.

CICC 2018 San Diego, CA

4.6° delay in

reference pixel

wire bonded to daughter board and mounted on motherboard

ie cicc

partial encapsulation with epoxy

ENIG plating of electrodes

Electrochemical Measurements

- Measure varying buffer strengths as proxy for DNA binding
 - Ion concentration affects solution resistance and double-layer capacitance
 - Add 1 µL of 20×SSC (saline-sodium citrate) buffer repeatedly to 45 µL 3×SSC

Zika Assay Measurements

Functionalized with 30-nucleotide ssDNA associated with the Zika virus

Distinguish between complimentary and mismatched DNA

Comparison

	JSSC 2009	ISSCC 2010	TBCAS 2012	TBCAS 2017	This Work
Tech. [µm]	0.5	0.35	0.13	0.35	0.18
Power [mW]	0.006	84.5	0.35	0.32	63
On-Chip Electrodes	No	Yes	Yes	No	Yes
Num. Sensors	-	100	64	-	320
Num. Channels	1	100	16	1	320
Area/Ch. [µm²]	60,000	10,000*	60,000	70,000	19,600
Power/Ch. [µW]	6	845	5.57	320	197
ADC	On Chip	Off Chip	In Pixel	In Pixel	In Pixel
Output Format	8-bit	Analog	16-bit	10-bit	21-bit
Freq. [Hz]	0.1 - 10 ⁴	10 ² -5×10 ⁷	0.1 - 10 ⁴	10 ⁻⁴ - 10 ⁵	5×10 ³ - 10 ⁶
Quadrature Signal Req.	Yes	Yes	Yes	No	No
Magnitude Error	0.32% @10 Hz	-	-	0.28% @10 kHz	N/A
Phase Error	2.7% @1 kHz, 38 S/s	-	-	0.12% @10 Hz, 10 S/s	0.04% @50 kHz, 24 S/s

State-of-the-art rms phase error @ smallest area with in-pixel quantization

Conclusion

- High-density biosensor array for DNA hybridization
- Key challenges: <u>scalability</u> and <u>sensitivity</u>
- To address this, we:
 - Used a polar mode measurement scheme
 - Designed a mostly digital phase detector decreasing per pixel circuit area
 - Designed a <u>TDC with in-pixel averaging</u> to increase SNR
- Results:
 - Achieves state-of-the-art rms phase error of 0.04% / 0.14° at 50 kHz
 - Accumulation increases SNR 10 dB for every 10x readout time
 - Smallest area per channel with on-chip quantization
 - Successfully measured hybridization of Zika virus DNA

