10.2 A 139µW 104.8dB-DR 24kHz-BW CTΔΣM with Chopped AC-Coupled OTA-Stacking and FIR DACs

Somok Mondal1,2, Omid Ghadami3, Drew A. Hall1
1University of California, San Diego, La Jolla, CA
2now with Apple, San Jose, CA

Continuous-time delta-sigma modulators (CTΔΣMs) have inherent anti-aliasing, resistive inputs, and relaxed settling requirements making them popular for audio applications. Due to the relatively low bandwidth, the noise-efficiency of the first OTA has a substantial influence on the power and FoM. OTA-stacking is a recently reported technique that improves the noise-current tradeoff in continuous-time amplifiers [1], [2]. This is the central idea behind the proposed CTΔΣM where an AC-coupled stacked OTA improves the noise-efficiency of the first integrator. The ADC with a 3-stack OTA achieves 100.9dB SNDR and 104.8dB DR in a 24kHz bandwidth while consuming 139µW for a state-of-the-art Schreier FoM of 187.2dB.

Addressing the noise-efficiency in ΔΣMs has been the focus of several prior works, summarized in Fig. 10.2.1. In [3], FIR DACs enable chopping at lower frequencies, which removes the OTA’s 1/f noise, but does not reduce the thermal noise. With negative-R assistance in [4], the OTA noise is reduced, but incurs additional resistor noise. In [5], a gain stage attenuates the resistor noise, but needs a wide bandwidth to not impact the noise transfer function (NTF). The discrete-time ΔΣM in [6] stacks closed-loop, switched-capacitor amplifiers that reduce the noise like this work, but the implementation limits the OTAs to a single stage (with low gain) and requires a high supply voltage (5.4V). With OTA-stacking, N inverters are stacked vertically reusing the same bias current, \(I_{DC} \), as shown in Fig. 10.2.1. In differential-mode, all N inverters are decoupled as their source nodes are virtual shorts, while the inputs and outputs are AC shorted, respectively. Hence, all small-signal parameters are in parallel where \(N \)-fold \(G_m \)-boosting results in a 1/N reduction of the input-referred noise. Despite the lower noise, stacking comes at the expense of a higher \(V_{CC} \) and thus only marginal improvements to an amplifier’s power efficiency factor (PEF). A single-tailed amplifier’s PEF scales as \(1+1/N \), where stacking diminishes the contribution of the tail devices [1]. A tailless version reduces the headroom but sees no PEF improvement with further stacking. The minimum PEF may be realized with a low \(V_{CC} \), alone, without stacking. However, an oversampled ADC benefits from both an increase in \(V_{CC} \) and stacking since the FoM improves as \(10\log(V_{CC})+10\log(M) \). Fundamentally this arises because the PEF captures the tradeoff between the input-referred noise and power, while the Schreier FoM captures the SNDR and power tradeoff.

Having established the merit, implementing OTA-stacking in a CTΔΣM poses several challenges: 1) The AC-coupling blocks DC where an integrator needs high DC-gain. This is readily addressed by upmodulating the signal with chopping. 2) The transient settling response due to the large DAC steps at the modulator’s summing node is degraded by the large coupling capacitors. Thus, a multi-level DAC is required to reduce the swing for high linearity. 3) Finally, and most importantly, the OTA has a band-pass response due to the large DAC steps at the modulator’s summing node is degraded by the large coupling capacitors. Thus, a multi-level DAC is required to reduce the swing for high linearity. 3) Finally, and most importantly, the OTA has a band-pass response.

The first integrator, shown in Fig. 10.2.3, is realized by a 4-stage amplifier with feedforward compensation. Two versions of the OTA, a 1- and 3-stack, were designed for comparison. For the tailless 3-stack version, the central inverter is self-biased at \(V_{T}/2 \) and the intermediate devices to reference voltages generated by a replica network. Despite the lack of a tail source to degenerate the common-mode (CM) gain, high common-mode rejection (CMR) is achieved due to the self-feedback in the intermediate differential pairs [1] and the loops biasing the top- and bottom-most differential pairs, along with chopping and filtering. With \(f_{chop}=900kHz \) and an OTA-3dB high-pass corner of \(-30kHz \), CM signals are significantly attenuated (e.g., \(>50dB \) at 60Hz). The notch width in the frequency response around multiples of \(f_{chop} \) is <60kHz for the stacked-OTA, significantly less than the -3dB width of the FIR feedback nulls \(<250kHz \). Selection of \(N_{m} \)s chooses tradeoffs related to \(f_{chop} \), signal swings, and, importantly, the null width (since higher \(N_{m} \)s lowers \(f_{chop} \), but reduces the null width). With proper \(G_{m,up}/G_{m,down} \) ratios of the feedback stage and an explicit compensation capacitor, \(C \), the poles and zeros are placed to avoid multiple gain crossover frequencies across all corners ensuring a phase margin of >70° and a DC-gain >90dB based on simulations. The 1-stack ADC is analogous to the 3-stack version, albeit the input stage is a dual-tail inverter-based OTA with no AC-coupling. 3x more current, and the same input-referred noise. While \(R_{in,OTA} \) contributes >95% of the total noise, the input-\(G_{m} \) draws high power and contributes >2.5% of the total noise. All other integrators are 3-stage OTAs with nested Miller compensation.

The two ADCs intended for the same resolution were implemented in 65nm CMOS occupying 0.25 and 0.39mm² for the 1- and 3-stack, respectively. Figure 10.2.4 shows the measured SNDR and DR for the 1- and 3-stack ADCs achieving 101.0/104.8dB and 100.9/104.8dB, respectively. The ADC spectra has out-of-band tones at \(f/5 \) and its multiples (likely from the asymmetric 8°- and 9°-tap feedback DACs), in contrast to the out-of-band tones at \(f/2N_{m} \) from the symmetric feedback [3]. These do not limit the in-band performance with the noise floor set by the input resistors. The measured linearity is excellent with >113dB SFDR, the CMRR/PSRR at 60Hz are >95/86dB, respectively, and the alias rejection around \(f_{s} \) is >80dB, as shown in Fig. 10.2.5, along with the power breakdown for both versions. Figure 10.2.6 compares this work to prior art and Fig. 10.2.7 shows an annotated die photo. While the 1-stack version consuming 232µW has a competitive FoM of 181.1/184.9dB, this is improved by 2.3dB to 183.3/187.2dB with 3-fold stacking and a lower power consumption of 139µW resulting in state-of-the-art performance.

Acknowledgement:
This work was supported in part by the UCSD Center for Wireless Communications (CWC).

References:

The ADC is implemented as a 3rd-order, 1b CTΔΣM (\(f_{s}=7.2MHz \), OSR=150, SNDR=112dB, \(R_{in}=13kΩ \)) using a CFF-8 topology with optimized zeros and 9-tap FIR DACs, as shown in Fig. 10.2.2. For the main FIR DAC, the first tap is zero to allow for a full clock cycle of comparator delay, while the remaining 8 taps are equally weighted. The main path is thus effectively an 8-tap filter. The auxiliary DAC without the zero tap compensates for the excess loop delay (ELD) of the main DAC. This choice was made because the comparator non-idealities (e.g., signal-dependent delay) degrade the SNDR mostly in the main feedback path and not the auxiliary path. No extra fast path DAC or summing network is needed.
Prior techniques to improve the power efficiency of the first integrator in a ΔΣM:

- **FIR Feedback** (3):
 - Enables chopping, reduces 1/f noise
 - Cannot reduce OTA’s thermal noise
 - Negative 0/1 quantization

- **Capacitively-coupled gain stage** (5):
 - 4x attenuation of integrator’s input noise
 - Mids BR gain stage for unfiltered NTF

- **Stacked-steering stacked integrator** (6):
 - Zoom architecture (7)
 - Stacked IC-integrators, lower noise
 - Needs high VVcc, -5 V
 - Needs an extra Vdd/2 supply source
 - DC-coupled IC-integrators cannot be directly stacked

Proposed first integrator:

- Stacked OTA (1, 2):
 - Higher Gm, lower noise for same current

- Stacked amplifier: PEF = 1 + 1/N [1]

- ADC FoM = constant + 10 log(VDD) + 10 log(Vout)

Figure 10.2.4: Measured ADC spectra and dynamic range.

Figure 10.2.5: Measured CMRR/PSRR, anti-aliasing property, linearity, and power breakdown.

Figure 10.2.6: Performance summary of the 1- and 3-stack ADCs and comparison to the state-of-the-art.