A 139µW 104.8dB-DR 24kHz-BW CTΔΣM with Chopped AC-coupled OTA-Stacking and FIR DACs

<u>Somok Mondal^{1,2}</u>, Omid Ghadami¹, and Drew A. Hall¹

¹University of California, San Diego, La Jolla, CA ²now with Apple, CA

Speaker Bio

Somok Mondal

B.Tech & M.Tech 2013

Ph.D. 2020

ASIC Design Engineer present

Research Interests

Indian Institute of Technology, Kharagpur Electronics & Electrical Communication Engineering

University of California, San Diego Electrical and Computer Engineering

Apple Inc., San Diego

Analog/RF integrated circuits for power-efficient bio-medical and IoT sensor nodes, data-converters

CTΔΣM for high resolution Audio ADCs

Personalized Audio & Entertainment Devices

- Portable far field voice capture devices
- Voice controlled Internet of Thing (IoT) sensors

$CT\Delta\Sigma M$ for high resolution Audio ADCs

Personalized Audio & Entertainment Devices

- Portable far field voice capture devices
- Voice controlled Internet of Thing (IoT) sensors

Requirements:

- >100 dB dynamic range
- 16-bit resolution
- 24 kHz bandwidth
- Portable applications

CTΔΣM for high resolution Audio ADCs

- Resistive inputs
- Inherent anti-aliasing
- Relaxed settling

CTΔΣMs are good for power-efficient audio-BW ADCs

Outline

- Motivation and Prior Work
- OTA-Stacking Concept
- Proposed ADC with OTA-Stacking and FIR DACs
- Circuit Implementation
- Measurement Results
- Conclusion

Audio CTΔΣM: Key Limitation

Noise efficiency of the input OTA has a significant influence over the ADC power and FoM

FIR Feedback [Billa ISSCC'16]:

- Enables chopping, reduces 1/f noise
- Cannot reduce OTA's thermal noise

FIR Feedback [Billa ISSCC'16]:

- Enables chopping, reduces 1/f noise
- Cannot reduce OTA's thermal noise

Negative-R assistance [Jang ISSCC'20]:

- Lowers OTA's thermal noise
- × $-R_{\rm N}$ adds noise
- -R_N weakly depends on open-loop g_m

Cap. gain stage [Chandra. ISSCC'18]:

- 4x attenuation of integrator's input noise
- Wide BW gain stage for unaffected NTF

Cap. gain stage [Chandra. ISSCC'18]:

 Wide BW gain stage for unaffected NTF Zoom architecture [Gönen VLSI'19]:

 Coarse quantization by low power SAR

Split-steering stacked integrators [Steiner ISSCC'16]:

- Stacked SC-integrators, lower noise for same current
- Limits OTA implementations to single stage
- Needs high V_{DD} (5.4 V)
- × Needs an extra $V_{DD}/2$ supply source
- DC-coupled *RC*-integrators cannot be directly stacked

Proposed CTΔΣM with OTA-Stacking

Proposed CTΔΣM with OTA-Stacking

Noise efficiency of the input OTA improved by stacking

Single-ended Stacked OTA

Single-ended Stacked OTA AC-coupled inverter-based transconductor

AC-coupled inverter-based transconductor

Equivalent small-signal model

 $G_{\rm m}$ boosting: $G_{\rm m,stacked} = NG_{\rm mo}$

 $R_{\text{out,stacked}} = R_{\text{o}}/N$ $A_{\text{v,stacked}} = G_{\text{m}}R_{\text{out}} = G_{\text{mo}}R_{\text{o}}$

Higher *G*_m for the same current!

Stacked-OTA in Differential-mode

Inherent decoupling in differential-mode

Stacked-OTA in Differential-mode

Inherent decoupling in differential-mode G_{m} boosting: $G_{m} = NG_{mo}$

Input-referred thermal noise:

Lower noise for the same current!

Stacked-OTA in Common-mode

Low impedance looking into the source nodes of other stacked stages

No common-mode rejection?

© 2021 IEEE International Solid-State Circuits Conference

Stacked-OTA in Common-mode

CM half-circuit for a 3-stack OTA:

Shorted outputs:

CM current into intermediate stacked stages is suppressed by "self-feedback"

[Mondal JSSC'20]

Output AC-coupling ensures good-common-mode rejection

Stacking Benefits: Amplifier PEF

$$V_{\text{DD},min} = N V_{\text{INV}} + V_{\text{tail}}$$

Noise $\downarrow N$

 $Power_{\min} \uparrow N$

 $PEF_{min} \propto V_{INV} + V_{tail}/N$

 $PEF = NEF^2 V_{DD}$ PEF: Amplifier noise vs power trade-off. PEF Improvements $\propto 1 + 1/N$

- Tailed amplifier [Mondal JSSC'20]: PEF improves marginally
- Tailless amplifier [Shen VLSI'19]: PEF sees no improvement with stacking

Should we lower *V*_{DD} or keep stacking?

Stacking Benefits: ADC FoM

"Assuming input $G_{\rm m}$ is the only power consuming block"

Maximizing $R(G_{m,int}R >> 1) \rightarrow$ maximizes the closed-loop linearity

$$\frac{V_{\text{out}}}{V_{\text{in}}}(s) = -\left(\frac{G_{\text{m,int}}R}{1+G_{\text{m,int}}R}\right)\frac{1}{sCR}$$

 $(G_{m}: input stage transconductance;$ $G_{m,int}: RC-integrator overall OTA's transconductance)$

Stacking Benefits: ADC FoM

"Assuming input G_m is the only power consuming block"

Noise \cong 8*KTR*

$$G_{\rm m} = \alpha/R$$

$$FOM_{\rm S} = 10\log\left(SNDR \ \frac{{\rm BW}}{Power}\right) \cong 10\log\left(\frac{1}{4KT}\frac{V_{\rm DD}}{4\alpha} \ \frac{G_{\rm m}}{I_{\rm DC}}\right)$$

Direct Improvements in ADC FoM with both $\uparrow V_{DD}$ and $\uparrow N$

- AC-coupling blocks DC; integrator needs high DC gain
- → Use chopping

- AC-coupling blocks DC; integrator needs high DC gain
- ➔ Use chopping
- Step response is poor with large coupling capacitors

- AC-coupling blocks DC; integrator needs high DC gain
- ➔ Use chopping
- Step response is poor with large coupling capacitors
- Stacked-OTA N Vin R1 ig about R1 ig about if a bout if a b

• Unwanted notches at multiples of f_{chop}

Signal response of AC-coupled OTA with chopped inputs:

Signal response of AC-coupled OTA with chopped inputs:

Key challenge: unwanted notches due to ac-coupled OTA

Proposed CTΔΣM with Stacking

Proposed CTΔΣM with Stacking

FIR DAC feedback with low swing and spectral nulls

FIR DACs with $f_{chop} = f_s / N_{FIR}$ mitigates the unwanted notches issue

- AC-coupling blocks DC; integrator needs high DC gain
- ➔ Use chopping
- Step response is poor with large coupling capacitors
- ➔ Use FIR DACs
- Unwanted notches at multiples of f_{chop}
- ➔ Use FIR DACs

Use FIR DAC feedback with low swing and spectral nulls

CTΔΣM Architectural Implementation

3rd-order CIFF-B with optimized zeros (cascade of integrators feedforward and feedback)

• *f*s = 7.2 MHz

- *OSR* = 150
- *f*_{chop} = 900 kHz

3rd-order active-RC CTDSM with FIR DAC

CTΔΣM Architectural Implementation

3rd-order CIFF-B with optimized zeros (cascade of integrators feedforward and feedback)

- *f*s = 7.2 MHz
- *OSR* = 150
- $f_{chop} = 900 \text{ kHz}$
- Full clock cycle ELD at main DAC
- Single compensation DAC restores NTF with FIR feedback and compensates for main DAC ELD

No extra fast path DAC or summing network is needed

Tail-less operation [Shen VLSI'19]

 ✓ Central inverter is selfbiased

- ✓ Central inverter is selfbiased
- ✓ Replica network biases intermediate transistors and sets the current.

- ✓ Central inverter is selfbiased
- ✓ Replica network biases intermediate transistors and sets the current.
- ✓ Good CM rejection for intermediate diff-pairs from 'self-feedback'.

- Central inverter is self- \checkmark biased
- ✓ Replica network biases intermediate transistors and sets the current.
- Good CM rejection for \checkmark intermediate diff-pairs from 'self-feedback'.
- ✓ Individual CM rejection loops for top and bottom diff.-pairs

Cci

R_{b,bot}

Cci

Cci

R b, bot

Ŵ C_{cor}

Rb,bot

· ci

굲

R_{b,mid}

R_{b,top}

V_{REF,top}

 $\frac{V_{DD}}{2}$

V_{REF.bot}

 V_{out}^+

 V_{DD}

 M_{p2}

⊵ M_{p2}

Mn2

/_{DD}/6●

First Integrator Implementation

First integrator opamp: 4-stage feedforward compensated

Chip Micrograph & Power Breakdown

© 2021 IEEE International Solid-State Circuits Conference

10.2: A 139µW 104.8dB-DR 24kHz-BW CTΔΣM with Chopped AC-coupled OTA-Stacking and FIR DACs

Measurement: ADC Spectra

~101 dB SNDR from both ADCs

Measurements: ADC Dynamic Range

Measurements: CMR, anti-aliasing

Measurements Summary

	Eland	Jang	Billa	Gonen	Chandra.	This Work	
	VLSI'20	ISSCC'20	JSSC'20	VLSI'19	ISSCC'18	1-stack	3-stack
Тороlоду	DT 2b Zoom	CT 1.5b NegR FIR DAC	CT 1b MASH FIR DAC	CT 1b Zoom	CT 6b w/ gain stage	CT 1b FIR DAC OTA-stacking	
Input	switch-cap	resistive	resistive	resistive	cap-coup.	resistive	resistive
Tech. (nm)	160	65	180	160	40	65	65
Area (mm²)	0.27	0.28	0.64	0.27	0.053	0.25	0.39
Supply (V)	1.8	1.2	1.8	1.8	1.2	1.2	1.2
BW (kHz)	20	24	24	20	5	24	24
f _s (MHz)	3.5	8	6.144	5.12	0.2	7.2	7.2
SNR _{max} (dB)	107.5	101	101.7	108.1	94.3	102.0	102.0
SNDR _{max} (dB)	106.5	99.4	100.9	106.4	93.5	101.0	100.9
DR (dB)	109.8	103.5	104	108.5	96.5	104.8	104.8
SFDR (dB)	-	110.2	108	-	102.5	113.9	113.7
Power (µW)	440	134	550	618	4.5	232	139
FoM _{SNDR}	183.1	181.9	179.6	181.5	184	181.1	183.3
FoM _{DR}	186.4	186	182.7	183.6	187	184.9	187.2

State-of-the-art FoM among comparable works is reported from 3-stack version

Measurements Summary

	Eland	Jang	Billa	Gonen	Chandra.	This Work	
	VLSI'20	ISSCC'20	JSSC'20	VLSI'19	ISSCC'18	1-stack	3-stack
Тороlоду	DT 2b Zoom	CT 1.5b NegR FIR DAC	CT 1b MASH FIR DAC	CT 1b Zoom	CT 6b w/ gain stage	CT 1b FIR DAC OTA-stacking	
Input	switch-cap	resistive	resistive	resistive	cap-coup.	resistive	resistive
Tech. (nm)	160	65	180	160	40	65	65
Area (mm²)	0.27	0.28	0.64	0.27	0.053	0.25	0.39
Supply (V)	1.8	1.2	1.8	1.8	1.2	1.2	1.2
BW (kHz)	20	24	24	20	5	24	24
f _s (MHz)	3.5	8	6.144	5.12	0.2	7.2	7.2
SNR _{max} (dB)	107.5	101	101.7	108.1	94.3	102.0	102.0
SNDR _{max} (dB)	106.5	99.4	100.9	106.4	93.5	101.0	100.9
DR (dB)	109.8	103.5	104	108.5	96.5	104.8	104.8
SFDR (dB)	-	110.2	108	-	102.5	113.9	113.7
Power (µW)	440	134	550	618	4.5	232	139
FoM _{SNDR}	183.1	181.9	179.6	181.5	184	181.1	183.3
FoM _{DR}	186.4	186	182.7	183.6	187	184.9	187.2

State-of-the-art FoM among comparable works is reported from 3-stack version

Measurements Summary

State-of-the-art FoM among comparable works is reported from 3-stack version

© 2021 IEEE International Solid-State Circuits Conference

Conclusion

OTA-Stacking for Noise Efficiency Enhancement "A fundamental technique to overcome noise-power trade-off for oversampling ADCs"

Demonstrated a 139 μ W, 104.8-DR Audio CT $\Delta\Sigma$ M

- ✓ CTDSMs benefit from both increase in supply and stacking
- ✓ FIR feedback with spectral nulls makes OTA-stacking viable
- ✓ A 2.3 dB FoM improvement in an ADC by 3-fold stacking was demonstrated
- ✓ State-of-the-art 187.2 dB FoM from 3-stack ADC

Can be ubiquitously incorporated to improve performance of almost all sensor front-ends!

Acknowledgements

UCSD Center for Wireless Communications for student support

Thank You!

Somok Mondal Email: <u>somondal@ucsd.edu</u>