Magnetoresistive Biosensors for Quantitative Proteomics

Prof. Drew Hall
(drewhall@ucsd.edu)
Biosensors and Bioelectronics Group
Web: http://BioEE.ucsd.edu
University of California, San Diego
Applications of Biosensors

Clinical Diagnostics
- Disease detection
 - HIV/AIDS
 - Cancer
 - Cardiovascular (heart) disease
- Therapy progression

Biomedical Research
- Drug discovery
- Kinetics of protein interactions

Environmental Testing
- Water pollution
- Food contamination
- Toxins
Outline

• Motivation and Applications

• Magnetic Biosensing
 – Background
 – High throughput readout
 – Temperature correction technique

• CMOS Biosensor Microarray
 – Circuit and system design
 – Measurement results

• Conclusion
The Magnetic Immunoassay

Giant Magnetoresistive Spin-Valves (GMR SV)

Passivation
Free Layer

<table>
<thead>
<tr>
<th>Oxide</th>
<th>[40 nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe</td>
<td>[2 nm]</td>
</tr>
<tr>
<td>Cu</td>
<td>[2.3 nm]</td>
</tr>
</tbody>
</table>

Pinned Layer

<table>
<thead>
<tr>
<th>Ru</th>
<th>[0.85 nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe</td>
<td>[2 nm]</td>
</tr>
<tr>
<td>PtMn</td>
<td>[15 nm]</td>
</tr>
</tbody>
</table>

Bias Point (90°)
Parallel (0°)
Antiparallel (180°)

\[
MR = \frac{R_{AP} - R_P}{R_P}
\]
The GMR SV as a Biosensor

Magnetic biochip

Sensor resistance changes from 1 → 2

Resistance

Time

1

net signal

2
Signal Modulation Scheme

- Modulate the signal from magnetic nanotags away from $1/f$ noise of sensor and interface electronics
- Electrical excitation and magnetic field modulated

$$\begin{align*}
V_{GMR}(t) &= I_0 R_0 \cos(\omega_c t) \\
&+ \frac{I_0 \Delta R_0}{2} \cos \left((\omega_c \pm \omega_f) t \right)
\end{align*}$$

S. Han, et al. ISSCC 2007
B. de Boer, et al. Biosens. and Bioelec. 2007
High Throughput Readout

- Techniques used to reduce readout time
 - Parallelized “column” readout
 - Frequency division multiplexing (FDM)
 - Time division multiplexing (TDM)
Two Tone Example

Spectral Analysis

Spectrogram
Temperature Induced Signals

$\Delta T > 20^\circ C$

Carrier Tone

Uncorrected Side Tone

GMR SV Sensor

GMR SV Sensor
Temperature Correction

• Use the carrier tone to measure relative temperature change

• Corrected side tone

\[\Delta ST = \kappa \cdot CT \]

• \(\kappa \) is a predetermined ratio of the \(TC_{MR}/TC_R \)
Outline

• Motivation and Applications
• Magnetic Biosensing
 – Background
 – High throughput readout
 – Temperature correction technique
• CMOS Biosensor Microarray
 – Circuit and system design
 – Measurement results
• Conclusion
System Architecture

Pseudo-differential analog front-end

Second order \(\Sigma \Delta \) modulator

Carrier Suppression

• Resistive DAC (RDAC)
 – Injects current 180° out of phase to suppress carrier
 – 6+1 bit R-2R ladder

![Diagram showing carrier suppression and amplitude vs frequency]
Analog Front-End

- Sensor interface requirements
 - Single ended input
 - Fixed input potential
 - High linearity
 - Isolation from ADC kickback

D.A. Hall, et al. - JSSC 2013
Performance Summary

<table>
<thead>
<tr>
<th>Entire Chip</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology:</td>
<td>0.18 μm (2P / 6M)</td>
</tr>
<tr>
<td>V\textsubscript{ddA} / V\textsubscript{dd} / V\textsubscript{ddD}:</td>
<td>2.0 V / 2.1 V / 1.8 V</td>
</tr>
<tr>
<td>Readout Columns:</td>
<td>16</td>
</tr>
<tr>
<td>Area:</td>
<td>2.7 mm x 2.7 mm</td>
</tr>
<tr>
<td>Power Consumption:</td>
<td>55.8 mW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front-End</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain:</td>
<td>17.5 kΩ (84.9 dBΩ)</td>
</tr>
<tr>
<td>Input Referred Spot Noise:</td>
<td>120 pA/√Hz (58 nT/√Hz)</td>
</tr>
<tr>
<td>w\textbackslash sensors:</td>
<td>160 pA/√Hz (78 nT/√Hz)</td>
</tr>
<tr>
<td>Power Consumption:</td>
<td>19.8 mW (36 %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Frequency:</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Oversampling Ratio:</td>
<td>500</td>
</tr>
<tr>
<td>Dynamic Range:</td>
<td>84 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># Sensors:</td>
<td>256</td>
</tr>
<tr>
<td>Readout Time:</td>
<td>4 s</td>
</tr>
<tr>
<td>Resistance / MR ratio:</td>
<td>1.5 kΩ / 11 %</td>
</tr>
</tbody>
</table>
Temperature Correction

Uncorrected

ΔMR [PPM]

-45°C

-25°C

+25°C

-45°C

-25°C

Corrected

ΔMR [PPM]

0

0

0

0

0

Time [min]

Time [min]
Proteomic Measurement Results

Secretory leukocyte peptidase inhibitor (SLPI)

![Graph showing time vs. concentration with different concentration levels and R² = 0.996]

- ΔMR/ΔMR₀ [ppm]
- Concentration [pM]
- Time [min]
- 0 pM control + 2σ

ELISA LOD
Clinical Ovarian Cancer Data

ΔMR/MR₀ [ppm]

- B2M: p > 0.1
- SLPI: p > 0.1
- EGFR: p < 0.1
- CEA: p < 0.1
- FLT3LG: p < 0.0005
- EpCAM: p < 0.0001
- Trop2: p < 0.0001

Control
Ovarian Cancer
Summary

• Demonstrated a scalable CMOS integrated biosensing platform based on GMR SV sensors and magnetic nanotags
 – Fully quantitative and highly sensitive
 – Large sensor array with multiplex detection
 – Rapid real-time readout
 – Carrier referenced temperature correction scheme
Acknowledgements

Richard S. Gaster
Harvard Med.

Sebastian J. Osterfeld
MagArray, Inc.

Kofi Makinwa
TU Delft

Shan X. Wang
Stanford

Boris Murmann
Stanford