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Abstract — We present an ECG dataset collected in real-

world scenarios for wearable devices that includes over 260 

recordings of 90-210 seconds that provide guidance for 

designers to evaluate signal acquisition circuit and system 

solutions. Several variations on the signal acquisition path are 

demonstrated, including various sources of interference 

(baseline wander, motion artifacts, and power line interference), 

signal path variations (electrode type, coupling method, and 

common-mode rejection method), and electrode placements 

(wrist and chest). Based on detailed analysis of signal 

characteristics under different scenarios, analog front-end 

(AFE) design recommendations are proposed. 

Keywords—Wearable Computers; ECG Dataset; Motion 

Artifact; Baseline Wander; Powerline Interference; WEAR 

I.  INTRODUCTION 

Wearable medical and health monitoring computers are 
playing an increasingly important role in our daily lives due 
to the convenience and continuous monitoring potential. 
Among all wearables, heart health monitors are gaining 
increased attention because heart disease has been the leading 
cause of death worldwide over the past decade [1]. Owing to 
the many meaningful temporal, spatial, spectral, and statistical 
features, electrocardiography (ECG) is regarded as the gold 
standard physiological signal for wearable heart health 
monitoring. In this paper, we focus on the wearable ECG-
based heart health monitoring computers and provide a dataset 
that will guide design and development of such systems. 

In most wearable applications, the signals are frequently 
impacted or corrupted by various environmental factors, such 
as baseline wander (BLW), motion artifacts (MA), and power 
line interference (PLI). Moreover, there are numerous 
variations in the acquisition system such as electrode type 
(wet vs. dry), coupling (AC vs. DC), and placement (wrist vs. 
chest) in addition to the common-mode rejection (CMR) 
method. Since all of these factors influencing the signal 
characteristics need to be considered when desiging an analog 
front-end (AFE), a dataset incorporating a variety of wearable 
application scenarios provides valuable insight for designers 
to determine appropriate design specifications, such as the 
dynamic range, bit resolution and circuit activation policy. 

Various useful ECG datasets exist today. PhysioBank, a 
large and open source archive of physiological signals, 
currently includes a large number of ECG datasets, most of 
which are clinical ECG data, such as MIT-BIH Arrhythmia 
Dataset, Long-Term ST Dataset and Long-Term AF Dataset 
[2]. Some datasets are for specialized conditions, like the 

Abdominal and Direct Fetal ECG Dataset, and MIT-BIH 
Noise Stress Test Dataset. The latter is the only one that 
considers noisy ECG signals [2]. In addition, American Heart 
Association (AHA) ECG Dataset mainly provides clinical 
ECG data [3], and Common Standards for 
Electrocardiography (CSE) Dataset focuses on improving the 
ECG measurement standard and diagnostic methods [4].  

Unfortunately, none of these datasets focus on wearable 
ECG applications; that is to say, no special attention has been 
paid to the unique conditions in wearable ECG computers, 
such as interference or electrode type, placement, and 
coupling. Although the MIT-BIH Noise Stress Test Dataset 
provides noisy recordings, they were synthesized by adding 
noise to clean ECG recordings, and do not necessarily 
represent real-world signals. In other datasets, the added noise 
is often simulated (e.g., 3 dB of white noise is added to ECG 
samples). Therefore, a dataset focusing on the wearable 
applications and representing a real-world experimental setup, 
along with true noise that we expect during real deployments, 
will be highly significant for analyzing the various signal 
characteristics and guiding design decisions. This dataset also 
provides the opportunity for algorithm developers to consider 
real-world data in algorithm design and evaluation.  

The purpose of this article is to develop a novel wearable 
ECG dataset that provides real-world wearable ECG 
recordings, taking into account various sources of interference, 
signal path variations and electrode placements. Furthermore, 
after analyzing the signal characteristics, corresponding 
recommendations are proposed, aiming to help the designers 
to determine effective AFE solutions and appropriate design 
specifications. The Wearable ECG Activity Recordings 
(WEAR) dataset can be found at: http://jafari.tamu.edu/wear.  

II. EXPRIMENTAL SETUP 

We present global considerations in the ECG signal 
acquisition path, as shown in Fig. 1, and then present the use 
cases for the data collection and analysis, as shown in Table I.  

A. Major Considerations in the Data Collection 

1) Activities. 10 activities are considered, as shown in 
Table I (footnotes). Activity 1 is used to measure baseline 
wander, activities 2-8 are used to evaluate motion-induced 
artifacts, and activities 9 and 10 are used to measure power 
line interference at different distances to the power line. 
Motion-induced artifacts dominate the ECG noise during 
activities 2-8, hence baseline wandering was not considered 
during these activities. 

http://physionet.org/physiobank/database/ltafdb/
http://physionet.org/physiobank/database/adfecgdb/
http://physionet.org/physiobank/database/nstdb/
http://physionet.org/physiobank/database/nstdb/
http://physionet.org/physiobank/database/nstdb/


2) Electrode placements. Single-lead ECG recordings, in 
particular from wrist and chest, are the most frequently used 
placements in wearable ECG applications due to their 
convenience. Besides wrist-based ECG, we also try two 
options for chest-based ECG, ‘chest-1’ and ‘chest-2’, with 
different distances between the signal electrode (S) and the 
reference/bias electrodes (R/B), to investigate two potential 
placements while maintaining acceptable signal quality. 
‘chest-1’ placement, due to the closer proximity of electrodes, 
offers more convenient wearability. 

3) Electrode types. Various electrode technologies have 
been reported and can be categorized into wet, dry, insulated, 
and non-contact electrodes for wearable applications [5]. The 
wet electrode usually provides better signal quality in terms 
of the noise and motion sensitivity. The other three types 
provide better comfort and utility in wearable applications. 
The non-contact electrode has an unresolved problem – 
susceptibility to motion-induced artifacts, and the insulated 
electrode is quite similar to the dry one in practice [5]. 
Therefore, we limit ourselves to dry and wet (patch-based) 
electrodes in this work. 

4) Coupling methods. AC coupling removes DC offset as 
well as low frequency noise and interference, reducing the 
dynamic range requirement of the AFE. Here, the bias 
electrode is DC coupled, while the signal and reference 
electrodes are either both DC or both AC (1.6 Hz corner 
frequency) coupled to show the difference. 

5) Common-mode rejection (CMR) methods. High CMR 
ratio (CMRR) is essential to reject the unwanted input signals 
common to both inputs of the differential amplifier. Two 
methods for CMR enhancement are considered in our data 
collection: open-loop and closed-loop CMR [6].  For the 
former, a 2.5 V common-mode voltage (bias voltage) directly 
drives the potential of the body through the bias electrode, 
while for the latter, an amplifier is used to sense and amplify 
the difference between the reference channel and this 2.5 V 
voltage and then drive the bias electrode, forming a closed-
loop for CMR enhancement. 

B. Data Acquisition Platform 

A customized bio-potential platform, shown in Fig. 1, was 
used for data acquisition [7]. This includes an MSP430 
microcontroller and a TI ADS1299 AFE with very low input-
referred noise to preserve the original signal as much as 
possible. The sampling rate was set to 488 Hz [8]. A 24-bit 
ADC was used to minimize the quantization error and the gain 

of the preamplifier was set to unity to reduce the possibility of 
saturation in the presence of large artifacts. Leveraging this 
setup, the influence of the AFE can be minimized to maintain 
the characteristics of the raw signal to the extent possible. 
AFE designers can set appropriate dynamic range targets 
based on recommendations given later. They can also lower 
the ADC resolution after evaluating the signal quality by 
adding quantization noise to the signals. 

Placements Electrodes Coupling

Wrist

Chest-1

Patch-based

Dry

DC

AC

Activites

…… 

Acquisition board

O
pe

n-
lo

op
 o

r 
cl

os
ed

-lo
op

 C
M

R

A
D

S1
29

9

MSP430

R B

R S

B

SR B

Chest-2

S

 
Figure 1. Global considerations in the ECG signal acquisition path: 1) 10 activities; 2) 3 electrode placements, including wrist/chest-1/chest-2 ECG (S/R/B 

represent signal/reference/bias electrodes); 3) 2 electrode types; 4) 2  coupling methods for the signal and reference electrodes; 5) the customized bio-potential 
acquisition board [7], providing two methods to drive the bias electrode for common-mode rejection (CMR): the open-loop and closed-loop CMR methods 

TABLE I.  USE CASES FOR THREE CATEGORIES AND 

MEASURED MAXIMUM DYNAMIC RANGE (DR) 

 
 10 Activities: 1) sitting; 2) drinking coffee; 3) typing on the keyboard; 

4) pressing and releasing the signal electrode; 5-6) walking at 1 and 3 
mph; 7-8) running at 5 and 7 mph; 9-10) sitting, 0.6 and 6 feet to the 

power line.  

 CL/OL CMR: closed-loop/open-loop common-mode rejection.  

 HB DR_max: maximum peak-to-peak voltage of the clean heartbeat 

(HB) among 5 subjects. HB DR_max in category MA and PLI reuses 

that in category BLW. 

 Signal DR_max: maximum peak-to-peak voltage of the signal after 
digital filtering among 5 subjects. Filtering methods:  

o BLW: 60 Hz notch filtering of the ECG signal with activity 1. 

o MA: 60 Hz notch filtering of the ECG signal with activity 8. 
o PLI: high pass filtering (1.6 Hz corner frequency) of the ECG 

signal with activity 9. 

 Ratio: equals to ‘Signal DR_max / HB DR_max’. 
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C. Use Cases 

The dataset currently includes 52 use cases for each of 5 
subjects, 4 male and 1 female, all healthy individuals in the 
age group 20-35. There are a total of 260 recordings with 
duration of 90 to 210 seconds each with more recordings to be 
added in future.  As shown in Table I, for baseline wander, 
different electrode types, coupling methods, and placements 
are considered, with a duration of 3.5 minutes for each 
recording. For motion artifacts, the emphasis is on various 
motion-related activities, with a duration of 1.5 minutes for 
each recording (at rest for the first and last 15s). For power 
line interference, the CMR methods, electrode placements and 
the distance to the power line are the major considerations, 
with a duration of 1.5 minutes for each recording. Therefore 
there are 94 minutes of data for each subject, and 140/210/120 
minutes of data for baseline wander/motion artifacts/power 
line interference statistics. Each experiment is named as 
X_Y_Z where X ∈ {P, D} (P: patch-based electrode, D: dry 
electrode), Y ∈ {D, A, CL, OL} (D: DC coupling, A: AC 
coupling, CL: closed-loop CMR, OL: open-loop CMR), Z ∈ 
{W, C1, C2} (W: wrist, C1: chest-1, C2: chest-2). The 
measured dynamic range of the ECG signal without (HB 
DR_max) or with (Signal DR_max) interferences are shown 
in Table I and their ratio illustrates the enlargement of the 
dynamic range. 

III. ANALYSIS 

Based on all 260 ECG recordings, we provide both signal 
characteristics analysis (Fig. 2) and design guidelines for the 
low power AFE, emphasizing on the dynamic range (Table I). 

Fig. 2 is based on the statistics of the 5 subjects and shows 
good consistency among subjects. The required bit resolution 
can be calculated based on the increase in dynamic range.  

A. Baseline Wander (BLW) 

Two examples of ECG signals are provided in Fig. 2a and 
2b. Fig. 2c and 2d show the peak-to-peak voltage (BLW V_pp) 
and signal-to-noise ratio (SNR) of the ECG signal for 8 use 
cases (Table I). It is challenging to calculate SNR for ECG 
signals because we cannot precisely discriminate the signal 
from the noise and there is no concrete definition for the signal. 
However, prior investigations have recommended a number 
of methods for SNR calculation. One is described in [9]: 

SNR = 10 ∗ log10

𝑎𝑣𝑔𝑝𝑜𝑤𝑒𝑟(𝑠𝑖𝑔𝑛𝑎𝑙)

𝑎𝑣𝑔𝑝𝑜𝑤𝑒𝑟(𝑏𝑙𝑤)
                   (1) 

where avgpower(signal) and avgpower(blw) are the average 
power of the signal above 1.6 and below 1.6 Hz frequency 
separately.  This definition is only applicable to baseline 
wander and 60 Hz interference, and will not work for motion 
artifacts due to the overlapping of ECG signal and motion 
artifact frequency bands at frequencies over 1.6 Hz. 

1) Placements. The chest-1 ECG in Fig. 2b shows a good 
ECG morphology with several distinguishable waves, 
illustrating the feasibility of this convenient placement with 
three adjacent electrodes close to the heart, due to observing 
stronger electrical activity at the heart. 

2) Electrode types. Compared with the patch-based 
electrode, the dry electrode with DC coupling (D_D_W) 

     

Figure 2. Data analysis for the baseline wander (BLW), motion artifact (MA) and power line interference (PLI) 
(a) – (d) for BLW: dry wrist (a) and chest-1 (b) ECG w/ DC coupling of subject 1; Max, mean and SD of ‘BLW V_pp’ (c); Min, mean and SD of SNR (d). 

Max: maximum; Min: minimum; SD: standard deviation; BLW V_pp: peak-to-peak voltage of signal contaminated by BLW after 60 Hz digital notch filtering; 
SNR: signal to noise ratio. 

(e) – (h) for MA: Max, mean and SD of ‘MA V_pp’for different electrode types and coupling methods, patch + DC (e), patch + AC (f), dry + DC (g) and dry + 

AC (h). ACT: activity; MA V_pp: peak-to-peak voltage of signal contaminated by MA after digital high pass filtering (1.6 Hz corner frequency) and 60 Hz 
digital notch filtering. 

(i) – (l) for PLI: dry wrist ECG w/ OL CMR with activity 9 of subject 1 (i); Max, mean and SD of ‘PLI V_pp’ with activity 9 (j); Max, mean and SD of PSD at 

60 Hz with activity 9 (k) and 10 (l).  PLI V_pp: peak-to-peak voltage of signal contaminated by PLI after digital high pass filtering (1.6 Hz corner frequency); 
PSD: power spectrum density; CL/OL CMR: closed loop/open loop common-mode rejection. 



corresponds to a higher BLW V_pp (33 mV) and a lower 
SNR of (-74 dB), while the one with the AC coupling 
(D_A_W) does not show significant difference. 

3) Coupling methods. As shown in Fig. 2c and 2d, with 
the same placement and electrode type, the AC coupling 
shows a lower V_pp and a higher SNR over the DC coupling. 
The difference between the AC and DC coupling for the dry 
electrode is much more distinguishable. 

4) Dynamic range. In Table I, with the patch-based 
electrode, the dynamic range for the DC coupling needs to be 
enlarged from 1.6 to 3.2 times with different placements, yet 
only 1.0 to 1.1 times for the AC coupling needed. With dry 
electrodes, 23.6 times enlargement is required for the DC 
coupling while the increase is 1.3 times for the AC coupling. 

B. Motion Artifact (MA) 

Fig. 2e to 2h illustrate the peak-to-peak voltage (MA V_pp) 
for 28 use cases (four different combinations of the electrode 
type and coupling method, and seven activities for each 
combination). The signal is processed by a 60 Hz digital notch 
filter, and a digital high pass filter (1.6 Hz corner frequency) 
for baseline wander removal in order to clearly demonstrate 
the motion-induced artifacts.  

1) Electrode types. The patch-based electrode (Fig. 2e 
and 2f) corresponds to a smaller MA V_pp (motion artifact 
peak-to-peak voltage) compared with the dry electrode (Fig. 
2g and 2h), benefitting from a better skin-electrode contact. 
A similar trend is observed in these 4 figures: with the 
increasing of motion intensity, more motion artifacts are 
induced, e.g., running (activity 7 and 8) corresponds to the 
highest MA V_pp, due to the drastic change of the contact 
impedance, EMG noise, and so on.  

2) Coupling methods. The motion-induced artifacts are 
similar for both DC and AC coupling, when comparing Fig. 
2e with 2f, and Fig. 2g with 2h, as the baseline wander was 
removed by either AC coupling or the digital filtering. 

3) Dynamic range. In Table I, to provide real-world 
scenarios for circuit designers, the baseline wander is also 
considered, since when motion is introduced, the baseline 
wander may dramatically increase. Taking the running 
(activity 8) as an example, with patch-based electrode, the 
enlargement of the dynamic range is 13.0 times for the DC 
coupling and 6.8 for the AC coupling. Whereas with the dry 
electrode, they are 57.1 and 12.0 times, respectively. 

C. Power Line Interference (PLI) 

Fig. 2i to 2l illustrate an ECG waveform, peak-to-peak 
voltage (PLI V_pp) and power spectrum density (PSD) at 60 
Hz for 16 cases of power line interference. The signal is 
processed by a digital high pass filter (1.6 Hz corner frequency) 
for baseline wander removal.  

1) Placements. In Fig. 2k and 2l, the interference for the 
chest-1 and chest-2 placements is slightly lower than that of 
the wrist placement. For the dry and patch-based electrodes, 
no distinguishable difference is observed.  

2) Common-mode rejection (CMR) methods. Compared 
with the open-loop CMR, the closed-loop CMR shows a 

lower PSD at 60 Hz, i.e., a better suppression of the power 
line interference (PLI), at both distances of 0.6 feet (Fig. 2k) 
and 6 feet (Fig. 2l) from the power line. The PLI V_pp (PLI 
peak-to-peak voltage) for 0.6 feet (Fig. 2j) also supports the 
same conclusion. When approaching closer to the power line 
(Fig. 2k), the performance difference of the two methods 
becomes more distinguishable. Fig. 2i gives an example of 
ECG with PLI, from which a huge interference can be 
observed. We are currently investigating a two-electrode 
setup (w/o the bias electrode) to evaluate the PLI suppression. 

3) Dynamic range. The dynamic range enlargement is 
from 1.1 to 1.2 times for closed-loop CMR and from 1.3 to 
2.4 times for open-loop CMR (Table I). 

IV. CONCLUSIONS 

In this paper, we introduced a novel wearable ECG dataset 
including 260 recordings, with 52 use cases for each of the 
five subjects, aiming to guide the design of the analog front-
end for wearable computers. Eight use cases for baseline 
wander, 28 for motion artifact and 16 for power line 
interference are provided. These use cases consider electrode 
placements, electrode types, coupling methods and common-
mode rejection methods. We proposed recommendations on 
the specifications of the AFE, especially the dynamic range, 
which needs to be enlarged by anywhere from 1.0 ~ 57.1 times 
according to specific scenarios. The dataset is made freely 
available to the scientific community: 
http://jafari.tamu.edu/wear. 
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