A 400 MHz 4.5 nW –63.8 dBm Sensitivity Wake-up Receiver Employing an Active Pseudo-Balun Envelope Detector

Po-Han Peter Wang, Haowei Jiang, Li Gao, Pinar Sen, Young-Han Kim, Gabriel M. Rebeiz, Patrick P. Mercier, and Drew A. Hall

University of California, San Diego

ESSCIRC 2017
Motivation

- The age of Internet of Everything (IoE)
 - 500 billion connected devices before 2030 [Cisco, 2014]
- Event-driven applications focuses on lifetime and range
 - Low power and high sensitivity are the main targets
Wake-up receiver (WuRX)

- For infrequent event-driven networks:
 - Always-ON WuRX extends system lifetime
 - WuRX sensitivity should be comparable with main RX
State-of-the-art WuRX comparison

Prior-art sub-μW WuRX compromises sensitivity for low power consumption
State-of-the-art nW WuRX

- Direct envelope detection architecture
- 25 dB passive gain enabled by high R_{in} ED

[Jiang, et al., ISSCC’17]
Q1: Could we use the same approach at a higher frequency?
Problem 1: high input capacitance ED

High C_{in} ED limits carrier frequency and passive gain

[ISSCC’17]
Problem 2: single-ended output ED

- Needs extra reference circuit for comparator
 - Extra tuning required for DC variation from PVT
 - Reference circuit is an additional noise source
- Q2: Could we eliminate the reference circuit?

[ISSCC’17]
Proposed WuRX architecture

Diagram showing the proposed WuRX architecture with components labeled such as Boosted SPI, S/H, g_m-C preamp, Latch, and various signal processing elements including codebook, 32-bit, 1 bit, 5 bits, 16-bit code, 2x oversampling, Wake-up signal, and output driver.
Proposed WuRX architecture

- Transformer filter
 - 18.5 dB passive gain @ 402~405 MHz MICS band
Proposed WuRX architecture

- Active pseudo-balun CG DTMOS envelope detector
 - Single-ended input to pseudo-differential output
 - Boosted SPI for super cut-off switches
Proposed WuRX architecture

- S/H stage and 2-stage comparator
 - S/H stage solves asymmetric comparator kickback at \varnothing_2
Proposed WuRX architecture

- Digital correlator
 - 2× oversampling overcomes clock asynchronization
 - 4 dB coding gain
Maximizing passive voltage gain
Maximizing passive voltage gain

\[A_V \approx \sqrt{\frac{R_{EQ,P} \| R_{chip}}{R_S}} \]

Requires high-Q passives and a large chip input impedance

E.g.: Assuming \(R_{chip} \to \infty \), 25 dB gain from 50 \(\Omega \) requires \(R_{EQ,P} = 16 \text{ k}\Omega \)
Maximizing passive voltage gain

Objective: under given f_{RF}, minimize $(C_S + C_{chip})$ to maximize L_S and therefore passive voltage gain.
Active envelope detector: prior-art

\[
i_{DS} = \mu C_{ox} \frac{W}{L} (n - 1)\phi_t^2 e^{\frac{v_{GS} - V_{th}}{n\phi_t}}
\]

\[
g_{m2} = \frac{1}{2} \cdot \frac{\partial^2 i_{DS}}{\partial v_{GS}^2} = \frac{I_{DS}}{2(n\phi_t)^2}
\]

- [RFIC’12]
- [ISSCC’17]

- High \(R_{in} \) supports high transformer passive gain
- Subthreshold biasing for large 2\(^{nd}\) order non-linearity
- DTMOS configuration provides 16% more \(g_{m2} \)
- High \(C_{in} \) limits frequency and achievable passive gain
Common Source vs. Common Gate ED

- **Problem:**
 - High C_{in}, fixed V_{th}

- **Benefit:**
 - Low C_{in}, tunable V_{th}

- **Common gate input eliminates C_{gd} and C_{bd}**
 - Saves 47.5% C_{in} based on simulation

- **Extra freedom on bulk bias voltage and V_{th} is tunable**
 - DTMOS advantage retained (16% extra g_{m2})
Active pseudo-balun CG ED

Current reuse

Secondary coil of transformer filter

V_{in}

$V_{out,n}$

$V_{out,p}$

$Z_{out,n}$

$Z_{out,p}$

C_{BLK}

L_S

NMOS

PMOS
Active pseudo-balun CG ED

Transformer reused as AC GND
Active pseudo-balun CG ED

$Z_{out,n}$

$g_{m1,n}v_{in}Z_{out,n}$

1^{st} order linear RF current

$g_{m1,p}v_{in}Z_{out,p}$

RF signal in phase and filtered out

V_{in}

C_{BLK}

L_S

$V_{out,n}$

$V_{out,p}$
Active pseudo-balun CG ED

\[Z_{out,n} \]

2nd order non-linear BB current

\[-g_{m_{2,n}}v_{in}^2Z_{out,n} \]

BB signal out of phase

\[g_{m_{1,p}}v_{in}^2Z_{out,p} \]
Active pseudo-balun CG ED

2\times \text{signal voltage}
2\times \text{noise power}
1.5 \text{ dB sensitivity improvement}

Pseudo-differential output
Reference circuit eliminated

\begin{align*}
Z_{\text{out},n} & \rightarrow -g_{m2,n}v_{\text{in}}^2Z_{\text{out},n} \\
V_{\text{out},n} & \rightarrow 2^{\text{nd order non-linear BB current}} \\
Z_{\text{out},p} & \rightarrow g_{m1,p}v_{\text{in}}^2Z_{\text{out},p}
\end{align*}
Proposed pseudo-balun ED schematic

- Active-inductor biasing as output load
 - High R_{out} and thus high conversion gain

- Binary-weighted tuning cells for PVT

- Larger transistors to further reduce $1/f$ noise
 - Less C_{in} penalty compared to CS input

- 1.8 nW; $k_{ED} = 301.2(1/V)$
GF 180 nm CMOS SOI process
RO4003 substrate
- Input S_{11} well matched across MICS band
- ED pseudo-differential output waveforms
-63.8 dBm sensitivity for MDR ≤ 10⁻³

>–20 dBm CW and >–50 dBm PRBS jammers could be tolerated @ 50 MHz offset w/o false alarm
Comparison to the state-of-the-art

<table>
<thead>
<tr>
<th></th>
<th>RFIC’12</th>
<th>ISSCC’16</th>
<th>ISSCC’17</th>
<th>CICC’13</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>130 nm</td>
<td>65 nm</td>
<td>180 nm</td>
<td>130 nm</td>
<td>180 nm</td>
</tr>
<tr>
<td>Supply</td>
<td>1.2 V</td>
<td>1 / 0.5 V</td>
<td>0.4 V</td>
<td>1.2 / 0.5 V</td>
<td>0.4 V</td>
</tr>
<tr>
<td>Data Rate</td>
<td>100 kbps</td>
<td>8.192 kbps</td>
<td>0.3 kbps</td>
<td>12.5 kbps</td>
<td>0.3 kbps</td>
</tr>
<tr>
<td>Passive Gain</td>
<td>12 dB</td>
<td>N/A</td>
<td>25 dB</td>
<td>5 dB</td>
<td>18.5 dB</td>
</tr>
<tr>
<td>ED Type</td>
<td>Active CS single-ended</td>
<td>Passive Dickson single-ended</td>
<td>Active CS single-ended</td>
<td>Passive Dickson single-ended</td>
<td>Active CG pseudo-balun</td>
</tr>
<tr>
<td>ED Power</td>
<td>23 nW</td>
<td>0</td>
<td>2.1 nW</td>
<td>0</td>
<td>1.8 nW</td>
</tr>
<tr>
<td>ED R_{in} @ RF</td>
<td>505.6 Ω</td>
<td>N/A</td>
<td>10 kΩ</td>
<td>76.3 Ω</td>
<td>30 kΩ</td>
</tr>
<tr>
<td>k_{ED} (1/V)</td>
<td>112.2</td>
<td>N/A</td>
<td>180.8</td>
<td>N/A</td>
<td>301.2</td>
</tr>
<tr>
<td>$k_{\text{ED}}/P_{\text{ED}}$ (1/V·nW)</td>
<td>4.9</td>
<td>N/A</td>
<td>86.1</td>
<td>N/A</td>
<td>167.3</td>
</tr>
<tr>
<td>Comp. Ref.</td>
<td>ED replica</td>
<td>RC LPF</td>
<td>Ref. ladder</td>
<td>N/A</td>
<td>None</td>
</tr>
<tr>
<td>Carrier Freq.</td>
<td>915 MHz</td>
<td>2.4 GHz</td>
<td>113.5 MHz</td>
<td>403 MHz</td>
<td>405 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>–41 dBm</td>
<td>–56.5 dBm</td>
<td>–69 dBm</td>
<td>–45 dBm</td>
<td>–63.8 dBm</td>
</tr>
<tr>
<td>RX Power</td>
<td>98 nW</td>
<td>236 nW</td>
<td>4.5 nW</td>
<td>116 nW</td>
<td>4.5 nW</td>
</tr>
</tbody>
</table>
Comparison to WuRXs ($f_{RF}>400$ MHz)

- **FoM (dB)**: $-P_{\text{SEN,norm}} - 10\log(P_{\text{DC}}/1\text{mW})$
- Best FoM among direct-ED based WuRXs

\[P_{\text{SEN,norm}}: \text{[Daly, et al., JSSC'10]} \]
Comparison to WuRXs ($f_{RF}>400$ MHz)

Some mixer-based WuRXs have better FoM, albeit at much higher DC power
Conclusions

- For event-driven applications with low-average throughput, WuRXs extend system lifetime
 - Design targets: Low power and high sensitivity
- The proposed design breaks the trade-off between sensitivity and carrier frequency by using:
 - Active ED with CG input to reduce input capacitance
 - Current-reuse pseudo-balun ED to improve 1.5 dB sensitivity without a power penalty
- Result:
 - A 400 MHz, 4.5 nW, –63.8 dBm sensitivity WuRX
Acknowledgment

☐ This work is supported by the Defence Advanced Research Projects Agency (DARPA) under contract No. HR0011-15-C-0134

☐ Mentor Graphics for the use of Analog FastSPICE tool (AFS)