

Session 3 - Oscillators and PLLs

A 107 µW MedRadio Injection-Locked Clock Multiplier with a CTAT-biased 126 ppm/°C Ring Oscillator

Somok Mondal and Drew A. Hall

University of California, San Diego La Jolla, CA, (USA)

The Internet of *Medical* Things – Io(M)T

 Miniaturized wearable sensor nodes

 Communication to a nearby data-aggregator (e.g., smartphone, smartwatch, etc.)

Ultra-Low Power Operation

- Medical Device Radiocommunications Service (MedRadio): 402-405 MHz
 - Frequency stability ±100 ppm/°C over **0 to 55** °C
 - Attenuate out-of-band/spurious emissions by 20 dBc

[1]: "Medical Device Radio Communications Service," in *Electronic Code of Federal Regulations (e-CFR)*, vol. Title 47, Chapter I, Subchapter D, Part 95, Oct. 2018.

- Medical Device Radiocommunications Service (MedRadio): 402-405 MHz
- Duty-cycled operation
- Short-range transmitter (<2 meters TX distance)

ie cicc

Injection-Locked Clock Multiplier (ILCM)

ie cicc

Prior Work – ULP Narrowband TX

[Teng JSSC '17], [Liu JSSC '14], [Ma TBioCAS '13] ✓

PLL-free low power TX

- Fast start-up
- × Very sensitive to PVT

Robust to static PV variations

- ★ Constant temperature assumption (close proximity to human body)
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
 <
- Slow start-up (if calibrated each time)

Dynamic temperature variations need to be addressed

Motivation & Proposed Work

Conventional Injection-Locked Clock Multiplier (ILCM):

- Robust
- Power hungry

Proposed open-loop ILCM:

- Low power
- PVT Robust
- Fast-start-up

IEEE CICC, Austin, TX, April 14-17, 2019

Ring Oscillator Temperature Sensitivity

Current-starved delay cell implementation

Temperature Compensation Concept

- Nominally, ring DCO's free-running frequency exhibits PTAT characteristics
- Introduce CTAT characteristics in frequency control knob

CTAT bias current to counteract the **PTAT** nature of osc. frequency

ILCM: Circuit Implementation

- Min 3-stage ring \rightarrow larger devices \rightarrow lower variations
- \circ 8-bit DCO with \pm 25% tuning range

CTAT Current Generation: Implementation

[Choi ESSCIRC '14]

$$V_{\rm b,CTAT} = -\frac{\eta V_{\rm T} \ln(N)}{2} + \frac{V_{\rm DD}}{4}$$

$$I_{\text{REF,CTAT}} = V_{\text{b,CTAT}} / R_{\text{b}}$$

- Low voltage, sub-threshold operation
- \circ N = 24, $R_{\rm b}$ adds negligibly to CTAT characteristics

Adds <5% power overhead

Delay Cell: Implementation

Delay Cell: Temperature Sensitivity

- Both junction and MOS capacitor exhibit CTAT TC $C_{\rm L} = C_{\rm L0}(1 - \alpha_C \Delta T)$
- Using current-starved delay cell $f_{\text{osc}} \propto \frac{I_{\text{DCO,CTAT}}}{C_{\text{L}}}$ $= \frac{I_{\text{DCO}}[k](1 - \alpha_{\text{I}}\Delta T)}{C_{\text{L0}}(1 - \alpha_{C}\Delta T)}$

TC cancellation independent of $I_{\text{DCO}}[k]$ (DCO mode)

Simulated Temperature Sensitivity

Free-running ring oscillator's Temperature Coefficients (TC)

Chip Micrograph

Low TC DCO: Measurements

Temperature sensitivity over multiple chips (DCO tuned to 403 MHz at 25 °C)

Low TC DCO: Measurements

Measured distributions across 20 chips

ie cicc

Low TC DCO: Measurements

Measured distributions across 20 chips

(Δ F: frequency deviation from nominal value at 25 °C)

Low TC DCO: Measurements

Temperature sensitivity of same DCO tuned to different frequencies (ΔF : frequency deviation from nominal value at 25 °C, F_o : Nominal tuned frequency)

ILCM: Measured Output Spectrum

403 MHz MedRadio band carrier from 31 MHz reference

ILCM: Measured Phase Noise

22

ILCM: Measurements over 0 to 55°C

Worst case measured spectrum and phase noise over 0 to 55°C range

Carrier to spur ratio (CSR) > 20 dB

Phase Noise consistent

ILCM: Measured Power Start-up

Measured settling time with step voltage on the supply

Fast settling for duty-cycled operation

ILCM: Measured Lock Time

Measured settling time with reference injection kick-starting the oscillator:

Low TC DCO: Standalone Performance

	[Zhang TCAS-I '11]	[Lee VLSIC '09]	[Lakhsmikumar CICC '07]	[Shrivastava CICC '12]	This Work		
Technology	90 nm	180 nm	130 nm	130 nm	180 nm		
Supply (V)	1	1.2	3.3	1.1	0.7		
Frequency	1.8 GHz	10 MHz	1.25 GHz	100 kHz	400 MHz		
TC (ppm/°C)	85	67	340	14	126 ¹ 198 ²		
Temp Range (°C)	7 to 62	-20 to 100	-40 to 120	20 to 70	0 to 55 ¹ -40 to 100 ²		
# chips measured	1	_	15	10	20		
F _{osc} Tuning	×	×	×	✓ via DCO	✓ via DCO		
Power	87 µW	80 µW	11 mW	1 µW	93 µW		
1 – MedRadio temperature range; 2 – Full temperature range;							

Low voltage, supports freq. tuning, supports injection-locking

ILCM: Performance Summary

	[Li ISSCC '18]	[Liu JSSC '14]	[Pandey JSSC '11]	[Yang TBioCAS'13]	This Work
Tech.	65 nm	65 nm	90 nm	65 nm	180 nm
Supply (V)	1.1	0.8	0.7	1	0.7
Topology	ILRO + FTL	ILRO + calibration	ILRO +EC	PLL	TC-ILRO + calibration
Freq. (MHz)	200	900	400	402	403
Multiplier	20 ×	9 ×	9 ×	1340 ×	13 ×
Phase noise	-95**	-100.8	-105.2	-102.1	-106.6
(dBc/Hz)	@300k	@1M	@300k	@200k	@300k
CSR (dB)	43	56#	44 [#]	45	41 [#] 30 [*]
Settling time	_	88 ns	250 ns	350 µs	30 ns
Lock time	_	_	_	_	150 ns
Power (µW)	130	538	<90	430	107
PVT-robust?	P√ V√ T√	P√ V√ T×	P× V× T×	P√V√T√	P√ V√ T√

**From reported PN plot; #Nominal value at room/single temperature; *Across MedRadio temperature range (meeting 20 dB regulation)

Conclusion

- ✓ <u>Open-loop</u> (PLL-free) ILCM
- ✓ <u>Dynamic temperature</u> variations addressed
- ✓ 126 ppm/°C Ring with <u>minimal power overhead CTAT-biasing</u>
- ✓ 150 ns start-up for <u>duty-cycled</u> operation
- ✓ Best combination of <u>PVT-robustness & low power</u> at comparable operation frequencies

Acknowledgement

 Equipment purchased through DURIP award from the Office of Naval Research (award no. N00014-18-1-2350)

